Mn-Disorder Effect on Magnetism and Half Metallicity of NiCoMnGa Quaternary Heusler Alloy

Abstract:

Article Preview

The full potential linearized augmented plane wave (FPLAPW) method within generalized gradient approximation (GGA) has been used to investigate the effect of disorder between Ni and Mn atoms on the electronic and magnetic properties of NiCoMnGa quaternary Heusler alloy. We observed that the increase in Mn concentration in NiCoMnGa destroys the half metallicity and decreases the total magnetic moment. Further, the disordered alloy exists in ferrimagnetic (FiM) ground state rather than ferromagnetic (FM) one of ordered system due to antiparallel alignment of extra Mn atom with respect to original Mn atom.

Info:

Periodical:

Edited by:

B.S.S. Daniel and G.P. Chaudhari

Pages:

270-273

Citation:

M. Singh et al., "Mn-Disorder Effect on Magnetism and Half Metallicity of NiCoMnGa Quaternary Heusler Alloy", Advanced Materials Research, Vol. 585, pp. 270-273, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, B. J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62 (2000) R4790-R4793.

DOI: https://doi.org/10.1103/physrevb.62.r4790

[2] R.A. de Groot, F.M. Mueller, P.G. van Engen, K. H. J. Buschow, New Class of Materials: Half-Metallic Ferromagnets, Phys. Rev. Lett. 50 (1983) 2024-(2027).

DOI: https://doi.org/10.1103/physrevlett.50.2024

[3] I. Galanakis, P. H. Dederichs, N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys, Phys. Rev. B 66 (2002) 134428-134437.

DOI: https://doi.org/10.1103/physrevb.66.134428

[4] M. Singh, H. S. Saini, S. Kumar, M. K. Kashyap, Effect of substituting sp-element on half metallic ferromagnetism in NiCrSi Heusler alloy, Comput. Mater. Sci. 53 (2012) 431-435.

DOI: https://doi.org/10.1016/j.commatsci.2011.08.037

[5] Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, H. Kubota, Giant tunneling magnetoresistance in Co2MnSi/Al–O/Co2MnSi magnetic tunnel junctions, Appl. Phys. Lett. 88 (2006) 192508-192510.

DOI: https://doi.org/10.1063/1.2202724

[6] S.N. Holmes, M. Pepper, Magnetic and electrical properties of Co2MnGa grown on GaAs (001), Appl. Phys. Lett. 81 (2002) 1651-1653.

DOI: https://doi.org/10.1063/1.1503405

[7] V. Alijani, J. Winterlik, G. H. Fecher, S. Shahab Naghavi, C. Felser, Quaternary half-metallicHeusler ferromagnets for spintronics applications, Phys. Rev. B 83 (2011) 184428-184434.

DOI: https://doi.org/10.1103/physrevb.83.184428

[8] P. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz: WIEN2k, An augmentedplane wave + Local Orbitals Program for calculating Crystal Properties, Techn. Universitat Wien, Wien, Austria, 2001, ISBN 3-9501031-1-2.

[9] P. Perdew, S. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: https://doi.org/10.1103/physrevlett.77.3865

[10] A. R. Williams, R. Zeller, V. L. Moruzzi, C. D. Gellat, J. kubler, Covalent magnetism: An alternative to the Stoner model, J. Appl. Phys. 52 (1981) 2067-(2069).

DOI: https://doi.org/10.1063/1.329617