Microstructural Characterisation of Devitrite, Na2Ca3Si6O16


Article Preview

On suitably heat treated samples of float glass, devitrite, Na2Ca3Si6O16, nucleates heterogeneously on the glass surface and grows as thin needles with a distinct [100] growth axis. The needles group together as spherulites and show evidence of low-angle branching in order to fill space. Analysis of the rate of needle growth along [100] between 680°C and 950°C suggests that the activation energy for diffusion governing the transport across the devitrite–glass interface is 260 kJ mol–1, somewhat higher than previous analyses have suggested. The devitrite needles are often twinned, with the twins related to one another by a Type II twinning rotation of 180° about the [100] growth axis direction. The formally irrational twin plane is very close to (010). Molecular dynamics simulations have been undertaken to establish the form of these twin interfaces to understand how and why devitrite twins in this manner.



Edited by:

B.S.S. Daniel and G.P. Chaudhari




K. M. Knowles et al., "Microstructural Characterisation of Devitrite, Na2Ca3Si6O16", Advanced Materials Research, Vol. 585, pp. 51-55, 2012

Online since:

November 2012




[1] V. Kahlenberg, D. Girtler, E. Arroyabe, R. Kaindl and D.M. Többens, Devitrite (Na2Ca3Si6O16)¾structural, spectroscopic and computational investigations on a crystalline impurity phase in industrial soda-lime glasses, Miner. Petrol. 100 (2010) 1-9.

DOI: https://doi.org/10.1007/s00710-010-0116-8

[2] M. Ihara, K. Odani, N. Yoshida, J. Fukunaga, M. Setoguchi and T. Higashi, The crystal structure of devitrite (disodium tricalcium hexasilicate), Ca3Na2Si6O16, Yogyo-Kyokai-Shi 92 (1984) 373-378.

[3] H.R. Swift, Some experiments on crystal growth and solution in glasses, J. Am. Ceram. Soc. 30 (1947) 165-169.

[4] H.D. Keith and F.J. Padden, A phenomenological theory of spherulitic crystallization, J. Appl. Phys. 34 (1963) 2409-2421.

[5] D. Turnbull and M.H. Cohen, Crystallization kinetics and glass formation, in: J.D. Mackenzie (Ed. ), Modern Aspects of the Vitreous State, Butterworth & Co. Ltd., London, 1960, pp.38-62.

[6] C. Kröger and G. Kreitlow, Die Lösungs- und Bildungswärmen der Natronkalksilikate, Glastech. Ber. 29 (1956) 393-400.

[7] P. Hrma, D.E. Smith, J. Matyáš, J.D. Yeager, J.V. Jones and E.N. Boulos, Effect of float glass composition on liquidus temperature and devitrification behaviour, Glass Technol.: Eur. J. Glass Sci. Technol. A 47 (2006) 78-90.

[8] E.D. Zanotto, Surface crystallization kinetics in soda‒lime‒silica glasses, J. Non-Cryst. Solids 129 (1991) 183-190.

DOI: https://doi.org/10.1016/0022-3093(91)90094-m

[9] J. Deubener, R. Brückner and H. Hessenkemper, Nucleation and crystallization kinetics on float glass surfaces, Glastech. Ber. 65 (1992) 256-266.

[10] B. Moğulkoç, K.M. Knowles, H.V. Jansen, H.J.M. ter Brake and M.C. Elwenspoek, Surface devitrification and the growth of cristobalite in Borofloat® (Borosilicate 8330) glass, J. Am. Ceram. Soc. 93 (2010) 2713-2719.

DOI: https://doi.org/10.1111/j.1551-2916.2010.03793.x

[11] K.M. Knowles and C.N.F. Ramsey, Type II twinning in devitrite, Na2Ca3Si6O16, Phil. Mag. Lett. 92 (2012) 38-48.

DOI: https://doi.org/10.1080/09500839.2011.622726

[12] I.T. Todorov, W. Smith, K. Trachenko and M.T. Dove, DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism, J. Mater. Chem. 16 (2006) 1911-(1918).

DOI: https://doi.org/10.1039/b517931a

[13] I.T. Todorov and W. Smith, The DL_POLY_4 Molecular Simulation Package, Science and Technology Facilities Council (STFC), Daresbury Laboratory, UK (2012).

[14] A. Ostapovets, Atomistic model of type-II twin boundary, Comp. Mater. Sci. 49 (2010) 882-887.

DOI: https://doi.org/10.1016/j.commatsci.2010.06.041

[15] W. van Westrenen, N.L. Allan, J.D. Blundy, J.A. Purton and B.J. Wood, Atomistic simulation of trace element incorporation into garnets¾comparison with experimental garnet-melt partitioning data, Geochim. Cosmochim. Acta 64 (2000) 1629-1639.

DOI: https://doi.org/10.1016/s0016-7037(00)00336-7