Synthesis and Analysis of High Surface Area Vanadium Carbide Nanoparticles

Abstract:

Article Preview

Vanadium carbide is known for its applications due to extreme hardness and high melting point. In this present work, vanadium carbide nanoparticles have been synthesized in a specially designed stainless steel autoclave by solvothermal route using vanadium pentoxide (V2O5) as precursor along with a hydrocarbon acetone (C3H6O) in the presence of reducing agent magnesium (Mg). The optimization of reaction time was studied at constant temperature of 800oC. The product powder was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM) and Brunauer – Emmett – Teller (BET) techniques. The results indicate that the product was vanadium carbide having particle size of about 30 nm with high surface area.

Info:

Periodical:

Edited by:

B.S.S. Daniel and G.P. Chaudhari

Pages:

95-99

DOI:

10.4028/www.scientific.net/AMR.585.95

Citation:

M. Mahajan et al., "Synthesis and Analysis of High Surface Area Vanadium Carbide Nanoparticles", Advanced Materials Research, Vol. 585, pp. 95-99, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] W. Oelerich, T. Klassen, R. Bormann, Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg, J. Alloy Compd. 322 (2001) 5-9.

DOI: 10.1002/chin.200135015

[2] J. Lee, K. Sohn, T. Hyeon, Fabrication of novel mesocellular foams with uniform ultralarge mesopores, J. Am. Chem. Soc. 123 (2001) 5146-7.

DOI: 10.1021/ja015510n

[3] R.D.K. Misra, Grain boundary segregation of phosphorus in iron-vanadium alloys, Acta Mater. 44 (1996) 4367-73.

DOI: 10.1016/1359-6454(96)00109-7

[4] H. Preiss, D. Schultzeb, K. Szulzewsky, Carbothermal synthesis of vanadium and chromium carbides from solution-derived precursors, J. Eur. Ceram. Soc. 19 (1999) 187- 94.

DOI: 10.1016/s0955-2219(98)00191-5

[5] H.P. Liermann, A.K. Singh, B. Manoun, Compression behaviour of VC0. 85 up to 53 Gpa, Int. J. Refract. Met. Hard Mater. 22 (2004) 129-32.

[6] N.G. Hashe, J.H. Neethling, P.R. Berndt, H.O. Andren, S. Norgren, A comparison of the microstructures of WC-VC-TiC-Co and WC-VC-Co cemented carbides, Int. J. Refract. Met. Hard Mater. 25 (2007) 207-213.

DOI: 10.1016/j.ijrmhm.2006.05.001

[7] Calka, W.A. Kaczmarek, The effect of milling conditions on the formation of nanostructures: synthesis of vanadium carbides, Scripta Metall. Mater. 26 (1992) 249-53.

DOI: 10.1016/0956-716x(92)90181-d

[8] P. Schwarzkopf, P. Kieffer, Refractory Hard Matals, MacMillaan, New York, (1953).

[9] B. Zhang, Z.Q. Li, Synthesis of vanadium carbide by mechanical alloying, J. Alloy Cmpd. 392 (2005) 183-6.

[10] R. Kapoor, S.T. Oyama, Synthesis of vanadium carbide by temperature programmed reaction, J. Solid State Chem. 120 (1995) 320-6.

DOI: 10.1006/jssc.1995.1415

[11] E. Iglesia, J. Baumgartner, F.H. Riberio, M. Boudart, Bifunctional reactions of alkanes on tungsten carbides modified by chemisorbed oxygen, J. Catal. 131 (1991) 523-44.

DOI: 10.1002/chin.199152076

[12] R.K. Sadangi, L.E. McCandlish, B.H. Kear, Synthesis and characterization of submicron vanadium and chromium carbide grain growth inhibitors, Adv. Powder Metall. Particul. Mater. Part 1 (1998) 9-15.

[13] J.S. Lee, S. Locatelli, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts 3. Turnover rates for the hydrogenolysis of n-butane, J. Catal. 125 (1990) 157-70.

[14] J.S. Lee, L. Volpe, F.H. Ribeiro, M. boudart, Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders, J. Catal. 112 (1988) 44-53.

DOI: 10.1016/0021-9517(88)90119-4

[15] Z. Hu, C. Chen, H. Meng, R. Wang, P.K. Shen, H. Fu, Oxygen reduction electrocatalysis enchanced by nanosized cubic vanadium carbide, Electrochem. Commun. 13 (2011) 763-765.

DOI: 10.1016/j.elecom.2011.03.004

In order to see related information, you need to Login.