Low-Pressure Nitriding According to the FineLPN Technology in Multi-Purpose Vacuum Furnaces


Article Preview

Developing steady state models to conduct and control repeatable processes of low-pressure nitriding is not possible in practice as the nitrogen content in a nitrided layer depends not only on the nitriding parameters, but also on the content of alloying elements in steel and the nucleation stage which is difficult to control. Therefore, a new concept of conducting such processes has been proposed. It has been shown that application of an appropriate method of activation of steel parts surface makes the nucleation stage uniform and reduces its duration. A system based on artificial intelligence methods has also been proposed, which enables modelling and control of non-equilibrium processes of low-pressure nitriding of tool steels. This model is based on the “boost-diffusion” schedule of the process.



Edited by:

Junqiao Xiong




P. Kula et al., "Low-Pressure Nitriding According to the FineLPN Technology in Multi-Purpose Vacuum Furnaces", Advanced Materials Research, Vol. 586, pp. 230-234, 2012

Online since:

November 2012




[1] P. Kula, Surface layer engineering, Lodz Technical University, Lodz, (2000).

[2] P. Kula, E. Wolowiec, A. Rzepkowski, B. Januszewicz, M. Wentlandt, Możliwości azotowania stali narzędziowych w uniwersalnym piecu próżniowym [Possibility of nitriding tool steel in a multi-purpose vacuum furnace], Material Engineering 4 (182) (2011).

[3] P. Kula, M. Korecki, R. Pietrasik, E. Wolowiec, K. Dybowski, Ł. Kołodziejczyk, R. Atraszkiewicz, M. Krasowski, FineCarb – the flexible system for low pressure carburizing, Journal of The Japan Society for Heat Treatment 49 (2009) 133-136.

[4] M. Kulka, A. Pertek, L. Klimek, The influence of carbon content in the borided Fe-alloys on themicrostructure of iron borides. Materials Characterization 56/3 (2006) 232-240.

DOI: https://doi.org/10.1016/j.matchar.2005.11.013

[5] A. Pertek, M. Kulka, Two-step treatment carburizing followed by boriding on medium-carbon steel, Surface and Coatings Technology 173 (2003) 309-3141.

DOI: https://doi.org/10.1016/s0257-8972(03)00522-x

[6] P. Kula, R. Pietrasik, K. Dybowski, M. Krasowski, S. Pawęta, M. Korecki, PreNitLPC – zaawansowana technologia wysokotemperaturowego nawęglania próżniowego - efekty i zastosowania [PreNitLPC - an advanced technology of high-temperature low-pressure carburising - effects and applications], Proc. XIIIth Seco/Warwick Seminar Swiebodzin, Poland (2010).

DOI: https://doi.org/10.4028/scientific5/amr.452-453.401

[7] M. Korecki, P. Kula, J. Olejnik, New capabilities in HPGQ vacuum furnaces, Industrial Heating 3/2011, (2011).

[8] M. Korecki, J. Olejnik, M. Bazel, P. Kula, R. Pietrasik, E. Wolowiec, Multi-purpose LPC+LPN+HPGQ 25 bar N2/He single chamber vacuum furnaces, Proc. 3rd International Conference on Heat Treatment and Surface Engineering of Tools and Dies, Wels, Austria (2011).

[9] P. Kula, R. Pietrasik, K. Dybowski, R. Atraszkiewicz, E. Wołowiec, M. Korecki, J. Olejnik, New technological pathways for universal vacuum furnaces, Proc. 18th IFHTSE - International Federation for Heat Treatment and Surface Engineering, Rio de Janeiro, Brazil (2010).

[10] P. Kula, M. Korecki, J. Olejnik, R. Pietrasik, E. Wolowiec, Low pressure nitriding - FineLPN – the new option for LPC + HPGQ vacuum furnaces, Proc. Furnaces of North America, Orlando, Florida (2010).

DOI: https://doi.org/10.4028/www.scientific.net/amr.586.230

[11] M. Korecki, J. Olejnik, P. Kula, R. Pietrasik, E. Wołowiec, Multi-purpose LPC+LPN+HPGQ 25 bar N2/He single chamber vacuum furnaces, Proc. ASM 2011 Heat Treating Society Conference and Exposition, Cincinnati, Ohio (2011), pp.309-314.