A Generalized Four Point Interpolatory Subdivision Scheme for Curve Design


Article Preview

ßIn this paper we propose a new kind of nonlinear and geometry driven subdivision scheme for curve interpolation. We introduce serval parameters in the new scheme.When the parameter ß is taken as 0, the new scheme presented in this paper regresses to the initial four point subdivision scheme, and when ß→∞ , the new scheme is convexity preserving. With proper choices of the subdßivision parameters,it can overcome the shortcoming of the initial four point subdivision scheme proposed.



Edited by:

Junqiao Xiong




X. F. Zhang, "A Generalized Four Point Interpolatory Subdivision Scheme for Curve Design", Advanced Materials Research, Vol. 586, pp. 378-383, 2012

Online since:

November 2012





[1] Aspert, N., Ebrahimi, T., and Vandergheynst, P., 2003. Non-linear subdivision using local spherical coordinates. Computer Aided Geometric Design, 20, 165-187.

DOI: https://doi.org/10.1016/s0167-8396(03)00028-1

[2] Dyn, N., Levin, D., and Gregory, J.A., 1987. A 4-point interpolatory subdivision schemefor curve design. Computer Aided Geometric Design, 4, 257-268.

DOI: https://doi.org/10.1016/0167-8396(87)90001-x

[3] Hassan, M.F., Ivrissimitzis, I.P., Dodgson, N.A., and Sabin, M.A., 2002. An interpolating point C2 ternary stationary subdivision scheme. Computer Aided Geometric Design, 19(1), 1-18.

DOI: https://doi.org/10.1016/s0167-8396(01)00084-x

[4] Kobbelt, L., 1996. A variational approach to subdivision. Computer Aided Geometric Design, 13(8), 743-761.

DOI: https://doi.org/10.1016/0167-8396(96)00007-6

[5] Marinov, M., Dyn, N., and Levin, D., 2004. Geometrically controlled 4-point interpolatoryschemes. in: Advances in Multiresolution for Geometric Modeling, N.A. Dodgson M.S. Floater M.A. Sabin (eds. ), Springer-Verlag.

[6] J¨uttler, B., and Schwanecke, U., 2002. Analysis and design of Hermite subdivision schemes. Visual Computer, 18(5), 326-342.

DOI: https://doi.org/10.1007/s003710100153