The Localized Mode and its Photoluminescence Characteristics of the Nematic-Liquid-Crystal-Filled One Dimensional Photonic Crystal

Abstract:

Article Preview

The localized mode and its Photoluminescence Characteristics of one dimensional liquid-crystal-filled photonic crystal with a defect layer (1DNLCFPC) were studied numerically by the transfer matrix method. Nematic liquid crystal (NLC) could be treated as uniaxial media when the external electric field intensity over the threshold. The angle θ was the angle between the direction of the vertical incident light and the direction of the electric field. When θ increased, the results could be found as follow: the 1DNLCFPC’s band gap gets wide and the wavelengths of both band edges get small; the defect mode’s wavelength of 1DNLCFPC gets small. The half-width at the defect modes’ half maximum is less than 0.2nm. The localized phenomenon can be found in the defect modes, meanwhile, light energy is localized nearby the defect layer. The largest relative light intensity in the localized layers has large value when the pump rate is very small.

Info:

Periodical:

Edited by:

Junqiao Xiong

Pages:

45-49

Citation:

B. X. Li et al., "The Localized Mode and its Photoluminescence Characteristics of the Nematic-Liquid-Crystal-Filled One Dimensional Photonic Crystal", Advanced Materials Research, Vol. 586, pp. 45-49, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] S. John, Phys. Rev. lett. 58 (1987).

[2] E. Yablonovich, Rev. Lett. 58 (1987).

[3] Jianhong Zhou, Xu Di, Da Mu, Jinhua Yang, and Wenbo Han. Opt. Commun. 285, 1 (2012).

[4] Rim Cherif, Mourad Zghal, and Luca Tartara. Opt. Commun. 285, 3 (2012).

[5] Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun. Applied physics B B104, 3 (2011).

[6] C. Y. Liu, Physica. E 44, 1 (2011).

[7] C. H. Tan, X. G. Huang, and J. L. Yin, Chinese Journal of Liquid Crystals and Displays. 21 (2006).

[8] C. Y. Liu, Physica. E 388, 1/2 (2006).

[9] Mohamed Farhat Othman Hameed and Salah S. A. Obayya. IEEE Journal of Quantum Electronics. 47, 10 (2011).

[10] J. Cos, J. Ferre-Borrull, J. Pallares, and LF Marsal, Optical and Quantum Electronics. 42, 8 (2011).

[11] E. V. Astrova, T. S. Perova, A. Zharova, S. A. Grudinkin, V. A. Tolmachev, and V. A. Melnikov, Journal of Luminescence. 121, 2 (2006).

[12] J. He, L. T. Song, H. L. Wang, Y. A. Han, and T. Li, Optoelectronics Lett. 6, 6 (2010).

[13] Y. Zhang and Q. Huang, Optoelectronics Lett. 2, 1 (2006).

[14] Y. Huang, J. P. Shi, S. L. Wen, and K. X. Dong, Optoelectronics Lett. 6, 3 (2010).

[15] Y. M. Xie and Z. D. Liu, Chinese Optics Lett. 6, 8 (2008).

[16] Y. M. Xie and Z. D. Liu, Physics Lett. A 341, 1/4 (2005).

[17] J. A. Reyes, A. J. A. Reyes, and P. Halevi, Opt. Commun. 281, 9 (2008).

[18] K. Horri and K. Saikai, Physical Rev. E 73, 1 (2006).

[19] G. Ren, P. Shum, X. Yu, J. J. Hua, G. H. Wang, and Y. D. Gong, Opt. Commun. 281, 6 (2008).

[20] M. Humar, M. Ravnik, S. Pajk, and I. Musevic, Nature Photonics. 3, 10 (2009).