Particle Swarm Optimization for Identification of PEMFC Generation System Fuzzy Model

Abstract:

Article Preview

This paper proposes particle swarm optimization (PSO) for identification of the Proton Exchange Membrane Fuel Cells (PEMFC) generation systems fuzzy model. The PEM fuel cell generation system efficiency decreases as its output power increases. Thus, an optimum efficiency should exist and should result in a cost-effective PEM fuel cell generation system. The PEMFC generation system cost and efficiency fuzzy model were build, we use the PSO as an optimization engine to indentify the fuzzy model. The simulation results were presented and the results show that we may minimize the total cost of the generation system by using the PSO.

Info:

Periodical:

Advanced Materials Research (Volumes 588-589)

Edited by:

Lawrence Lim

Pages:

260-263

Citation:

Y. Ren et al., "Particle Swarm Optimization for Identification of PEMFC Generation System Fuzzy Model", Advanced Materials Research, Vols. 588-589, pp. 260-263, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] ZHONG Zhi-dan, HUO Hai-bo, ZHU Xin-jian, CAO Guang-yi, REN Yuan, Adaptive maximum power point tracking control of fuel cell power plants[J]. Journal of Power Sources 2008, 176: 259–269.

DOI: https://doi.org/10.1016/j.jpowsour.2007.10.080

[2] GIDDEY S., CIACCHI F.T., BADWAL S.P.S., Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity[J]. Journal of Power Sources 2004, 125 : 155–165.

DOI: https://doi.org/10.1016/j.jpowsour.2003.08.026

[3] BARBIR F., GOMEZ T., Efficiency and economics of proton exchange membrane (PEM) fuel cells[J]. Int. J. Hydrogen Energy 1997, 22 (10/11) : 1027–1037.

DOI: https://doi.org/10.1016/s0360-3199(96)00175-9

[4] PEI Pu-cheng, WU Yang, LI Ping, Numerical prediction on an automotive fuel cell driving system[J]. Int. J. Hydrogen Energy, 2006, 31 : 361 – 369.

DOI: https://doi.org/10.1016/j.ijhydene.2005.06.028

[5] CARLSON E.J., KOPF P., SINHA J., SRIRAMULU S., and Yang Y., Cost Analysis of PEM Fuel Cell Systems for Transportation, TIAX LLC Cambridge, Massachusetts, September 30, (2005).

DOI: https://doi.org/10.2172/862302

[6] WOONKI Na, Bei Gou, The efficient and economic design of PEM fuel cell systems by multi-objective optimization[J]. Journal of Power Sources, 2007, 166: 411–418.

DOI: https://doi.org/10.1016/j.jpowsour.2007.01.022

[7] MEISAM Babaie, HOSEYN Sayyaadi , Multi-Objective Particle Swarm Optimization and Fuzzy Decision Making in a benchmark cogeneration System, ICIECS, Wuhan, China, December 19th-20th, 2009, 1052-1055.

DOI: https://doi.org/10.1109/iciecs.2009.5364781

[8] ASHRAF M. Abdelbar, SUZAN Abdelshahid, DONALD C. Wunsch, Fuzzy PSO: A Generalization of Particle Swarm Optimization, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005, 1086-1091.

DOI: https://doi.org/10.1109/ijcnn.2005.1556004

[9] EL-SHARKH M. Y., TANRIOVEN M., RAHMAN A., and ALAM M. S., A Study of Cost-Optimized Operation of a Grid-Parallel PEM Fuel Cell Power Plant, IEEE Transactions on Power Systems, Vol. 21, No. 3, August 2006, 1104-1114.

DOI: https://doi.org/10.1109/psce.2006.296202

[10] Alireza Askarzadeh, Alireza Rezazadeh, Artificial immune system-based parameter extraction of proton exchange membrane fuel cell, Electrical Power and Energy Systems, 2011, 33: 933–938.

DOI: https://doi.org/10.1016/j.ijepes.2010.12.036

[11] YE Mei-ying, WANG Xiao-dong, XU You-sheng, Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization, Int. J. Hydrogen Energy, 2009, 34: 981 -989.

DOI: https://doi.org/10.1016/j.ijhydene.2008.11.026

[12] PARSOPOULOS K. and VRAHATIS M., Particle swarm optimization method in multiobjective problems, in Proc. ACM Symp. Appl. Comput, Mar 2002, p.603–607.

DOI: https://doi.org/10.1145/508895.508907

[13] KHOSLA A., SHAKTI Kumar, AGGARWAL K.K., and JAGATPEET Singh, Particle Swarm for Fuzzy Models Identification, Studies in Computational Intelligence, 2006, 26: 149–173.

DOI: https://doi.org/10.1007/978-3-540-33869-7_7