Fabrication Scaffold by Extrusion Freeforming from High Solid Loading Ceramic Paste


Article Preview

A method for fabrication of mineral materials was studied. Micro extrusion freeforming of ceramics from high solid loading ceramic paste has advantages of low shrinkage stress, high sinter density, and environmental friendliness. Hydroxyapatite and alumina lattices were directly fabricated using 80 microns to 500 microns filaments. We report here on the implementation of design and fabrication of these scaffolds for photonic band gap materials. Influence of the solid contents of paste in the process of extrusion freeforming was studied.



Advanced Materials Research (Volumes 588-589)

Edited by:

Lawrence Lim




X. P. Chi et al., "Fabrication Scaffold by Extrusion Freeforming from High Solid Loading Ceramic Paste", Advanced Materials Research, Vols. 588-589, pp. 7-14, 2012

Online since:

November 2012




[1] D.T. Pham, and R. S. Gault, , A Comparison of Rapid Prototyping Technologies, Int. J. Mach. Tool Manu., Vol. 38(1998), PP. 1257-1287.

[2] M.K. Agarwala, et al, FDC, Rapid Fabrication of Structural Components, American Ceramic Society Bulletin, Vol. 11(1996), PP. 60-65.

[3] E.A. Griffin, et al, Rapid Prototyping of Functional Ceramic Composites, American Ceramic Society Bulletin, Vol. 7(1996), PP. 65-68.

[4] M.L. Griffith and J.W. Halloran, Freeform Fabrication of Ceramics via Stereolithography, J. Am. Ceram. Soc., Vol. 10(1996), PP. 2601-2608.

DOI: https://doi.org/10.1111/j.1151-2916.1996.tb09022.x

[5] J. Cesarano III and A. Thomas, Recent Developments in Freeform Fabrication of Dense Ceramics from Slurry Deposition, Proceedings Solid Freeform Fabrication Symposium, University of Texas at Austin( 1997).

DOI: https://doi.org/10.2172/554831

[6] S. S. Crump, Proc. 2nd Int. Conf. on Rapid prototyping, Dayton, OH, University of Dayton(1991), PP. 354-357.

[7] M. Allahverdi, A. Hall, R. Brennan, M. E. Ebrahimi, N. M. Hash and A. Safari, An Overview of Rapidly Prototyped Piezoelectric Actuators and Grain-Oriented Ceramics, J. electro. ceram., Vol. 8(2002), PP. 129-137.

[8] M. Greul, T. Pintant and M. Greulich, Rapid Prototyping of Functional Metallic Parts, Comput. Ind., Vol. 28(1995), PP. 23-28.

DOI: https://doi.org/10.1016/0166-3615(95)00028-5

[9] M. Greul, R. Lenk, Near-Net-Shape Ceramic and Composite Parts by Multyphase Jet Solidification (MJS), Ind. Ceram., Vol. 20(2000), PP. 115-117.

[10] M. Greulich, W. Steger, M. Greul and M. Sindel, Fast, Functional Prototypes via Multiphase Jet Solidification, Rapid Prototyping Journal, Vol. 1(1995), PP. 20-25.

DOI: https://doi.org/10.1108/13552549510146649

[11] S.L. Morissette, J.A. Lewis, J. Cesarano, D. Dimos, and T. Baer, Solid Freeform Fabrication of Aqueous Alumina-Poly(vinyl alcohol) Gelcasting Suspensions, J. Am. Ceram. Soc., Vol. 83.

DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01569.x

[10] 2000), PP. 2409-2416.

[12] G. Gratson, M. Xu, and J.A. Lewis, Microperiodic Structures: Direct Writing of Three Dimensional Webs, Nature, Vol. 428(2004), P. 386.

DOI: https://doi.org/10.1038/428386a

[13] J. Cesarano III, P. Calvert, Freeforming Objects with Low-Binder Slurry, US Patent 6, 027, 326(2000).

[14] J. Cesarano III, Solid Freeform and Additive Fabrication, Mater. Res. Soc. Symp. Proc., Vol. 542(1998), PP. 133-139.

[15] E.S. James, J. Cesarano III, and J.A. Lewis, Colloidal Inks for Directed Assembly of 3-D Periodic Structures, American Chemical Society, Vol. 18(2002), PP. 5429-5437.

DOI: https://doi.org/10.1021/la0257135

[16] M. Sarah, W. Willie, J.A. Lewis, Concentrated Hydroxyapatite Inks for Direct-write Assembly of 3-D Periodic Scaffolds, Biomaterials, Vol. 26(2005), PP. 5632–5639.

DOI: https://doi.org/10.1016/j.biomaterials.2005.02.040

[17] E.S. James, J. Cesarano III, and J. A. Lewis, Colloidal Inks for Directed Assembly of 3-D Periodic Structures, American Chemical Society, Vol. 18(2002), PP. 5429-5437.

DOI: https://doi.org/10.1021/la0257135

[18] F.N. Cogswell, in: Polymer Melt Rheoogy, A Guide for Industrial Practice, edited by John wiley and sons Publishers, New York and Toronto (1981), p.17.

[19] E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, Measurement of a Three-Dimensional Photonic Band Gap in a Crystal Structure Made of Dielectric Rods, Phys. Rev. B, Vol. 50.

DOI: https://doi.org/10.1103/physrevb.50.1945

[3] 1994), PP. 1945–(1948).

[20] E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalis, and K. M. Ho, Micromachined Millimeter-Wave Photonic Band-Gap Crystals, Appl. Phys. Lett., Vol. 64.

DOI: https://doi.org/10.1063/1.111736

[16] 1994), PP. 2059–(2061).

[21] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalis, W. Zubrzycki, and S. R. Kurtz, A Three Dimensional Photonic Crystal Operating at Infrared Wavelengths, Nature (London), Vol. 394(1998), PP. 251–253.

DOI: https://doi.org/10.1038/28343

[22] C. J. Reilly, W. J. Chappell, J. W. Halloran and L. P. B. Katehi, High-Frequency Electromagnetic Band gap Structures via Indirect Solid Freeform Fabrication, J. Am. Ceram. Soc., Vol. 87.

DOI: https://doi.org/10.1111/j.1551-2916.2004.01446.x

[8] 2004), PP. 1446-1453.

[23] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulous, Donor and Acceptor Modes in Photonic Band Structure, Phys. Rev. Lett., Vol. 67(1990), P. 3380.

DOI: https://doi.org/10.1103/physrevlett.67.3380