Deformation Behaviour of Sheet Metals in Laser Assisted Hydroforming Processes


Article Preview

Cupping small form elements in hydroforming processes requires high work pressures and clamping forces and thus high capital investments for presses. Localised laser heating used during sheet metal hydroforming processes should reduce the necessary work pressure. By reducing the yield strength and the strain hardening using local heating, small form elements can be formed at very low pressures of 2 MPa, whereas cold forming requires pressures which are 20-50 times higher. Besides the proportion of forming temperature and work pressure, temperature distribution is very important and can be adjusted using a special laser beam forming optic or a scanning processing head. Line network analysises were carried out showing great improvements in the resulting plastic deformation distribution. In order to characterise the general improvement of the material’s formability, forming limit curves (FLC) were generated using the bulge-test. The results approve the extended forming limit of the laser assisted warm cupping process. Moreover, the mechanical properties and the grain structure of the form elements generated were determined. All investigations were carried out for a deep drawing steel, a 5182 aluminium alloy and an AZ31 magnesium alloy.



Main Theme:

Edited by:

M. Geiger, J. Duflou, H.J.J. Kals, B. Shirvani and U.P. Singh




H. K. Tönshoff et al., "Deformation Behaviour of Sheet Metals in Laser Assisted Hydroforming Processes", Advanced Materials Research, Vols. 6-8, pp. 361-368, 2005

Online since:

May 2005




[1] K. Lange: Umformtechnik - Band 3: Blechbearbeitung, (Berlin: Springer Verlag, 1990).

[2] F. Vollertsen: Blechumformung mit Wirkmedien, Blech Rohre Profile 12 (1999), pp.39-46.

[3] H. Rösen et al.: Hydroblechumformung im Automobilbau, (paper presented at the Internationale Konferenz Hydroumformung - Hydroumformung von Rohren, Strangpressprofilen und Blechen Band 2, Fellbach, 6. /7. Nov. 2001, Frankfurt: DGM-Verlag), pp.145-168.

[4] W. Homberg: Untersuchungen zur Prozessführung und zum Fertigungssystem bei der Hochdruck-Blech-Umformung, (thesis RWTH Aachen: Shaker-Verlag, 2001).

[5] W. Homberg, M. Kleiner: Verfahren, Werkzeuge und Werkzeugmaschine zur HochdruckBlech-Umformung, (paper presented at the Kolloquium Wirkmedien-Blechumformung im Rahmen des DFG-Schwerpunktprogramms 1098, 2001, ISBN 3-00-008740-0), pp.121-128.

[6] S. Novotny: Innenhochdruck-Umformen von Blechen aus Aluminium- und Magnesiumlegierungen bei erhöhter Temperatur, (thesis Lehrstuhl für Fertigungstechnologie, Bamberg: Meisenberg Verlag, 2002).

[7] F. Vollertsen: Hydroforming of Aluminium Alloys Using Heated Oil, ed. J.R. Duflou et al. (Sheet Metal 2001, Leuven: ACCO C.V., 2001) pp.157-164.

[8] W. König et al.: Formgebung mit Laserstrahlung, VDI-Z 135 (4, 1993).

[9] M. Kerausch, M. Merklein, M. Geiger: Improved Material Flow for Deep Drawing of Aluminium Blanks by Local Laser Heat Treatment, (paper presented at the 10th International Conference on Sheet Metal, SheMet 2003, University of Ulster, Jordanstown (Ireland), April 14th-16th 2003) pp.73-80.

[10] A. Kratki: Laserunterstütztes Tiefziehen, (thesis Technische Universität Wien, Fachbereich Wirtschaftsingenieurwesen - Maschinenbau, 2001).

[11] H.K. Tönshoff, J. Bunte, L. Engelbrecht: Lasergestützte Erzeugung lokaler Nebenformelemente beim wirkmedienbasierten Umformen, (paper presented at the 2. Kolloquium Wirkmedien-Blechumformung in the priority programme 1098, 2002, ISBN 3-00- 010890-4) pp.29-31.

[12] H. Liebertz et al.: Guideline for the determination of forming limit curves, (paper presented at the IDDRG 2004 Conference Forming the Future May 24-26, 2004 in Sindelfingen: Verlag Stahleisen GmbH, Düsseldorf, pp.216-224).