Synthesis and Characterization of the Core-Shell CdTe/ZnS Quantum Dots


Article Preview

Core-shell quantum dots are colloidal particles consisting of a semiconductor core and a shell material as an outer coating layer. It can be utilized to develop sensitive methods for the detection of specific biological entities, such as microbial species, their transcription products, and single genes etc. The goal of current research is to synthesize CdTe and core-shell CdTe/ZnS quantum dots (QDs) with an improved process, and to investigate their properties. Well-dispersed CdTe core was prepared in aqueous phase with using 3-mercaptopropionic acid (MPA) as stabilizer under conditions of pH 9.1, temperature of 100 °C, refluxing for 6h, and mol ratio of Cd2+/Te2-/MPA is 1:0.5:2.4. Average size of 8 nm CdTe core was conformed via transmission electron microscopy (TEM). Core-shell CdTe/ZnS QDs were then synthesized to improve the optical properties and biocompatibility of CdTe core. Various conditions were researched to obtain the core-shell QDs with the best optical properties, such as quantum yields, fluorescence intensity etc. The results indicated that the core-shell qualified CdTe/ZnS was prepared under conditions of pH 9.0, temperature of 45 °C, refluxing for 1h, and mol ratio of CdTe/S2-/Zn2+ is 4/1/1. CdTe/ZnS with average size of 10 nm were achieved and conformed via TEM. Moreover, red shift of a maximum emission wavelength from 547 nm of CdTe to 587 of CdTe/ZnS was observed via fluorescence spectrum (FS), which inferred the growth of QDs and formation of ZnS shells. The achieved ZnS shell make CdTe core less toxic and more biocompatible, it will be useful in biological labeling, diagnostic process and biosensing system based on fluorescence resonance energy transition (FRET).



Advanced Materials Research (Volumes 60-61)

Edited by:

Xiaohao Wang






S. C. Xu et al., "Synthesis and Characterization of the Core-Shell CdTe/ZnS Quantum Dots", Advanced Materials Research, Vols. 60-61, pp. 165-169, 2009

Online since:

January 2009




In order to see related information, you need to Login.