Structural and Optical Properties of In0.27Ga0.73N/Si (111) Film Grown Using PA-MBE Technique

Abstract:

Article Preview

In this paper, InGaN/GaN/AlN/Si (111) structure was grown using a plasma-assisted molecular beam epitaxy (PA-MBE) technique. The structural and optical properties of grown film have been characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), high resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). Indium-mole fraction has been computed to be 0.27 using XRD data and Vegards law with high grain size and low tensile strain. Room-temperature photoluminescence revealed an intense peak at 534 nm (2.3 eV) related to our sample In0.27Ga0.73N.

Info:

Periodical:

Edited by:

Zainal Arifin Ahmad, Muhd Ambar Yarmo, Fauziah Haji Abdul Aziz, Meor Yusoff Meor Sulaiman, Badrol Ahmad, Khairul Nizar Ismail, Norazharuddin Shah Bin Abdullah, Muhammad Azwadi Sulaiman and Ahmad Zahirani Ahmad Azhar

Pages:

368-372

Citation:

S. H. Abud et al., "Structural and Optical Properties of In0.27Ga0.73N/Si (111) Film Grown Using PA-MBE Technique", Advanced Materials Research, Vol. 620, pp. 368-372, 2013

Online since:

December 2012

Export:

Price:

$38.00

[1] K.P. Beh, F.K. Yam, CW Chin, S.S. Tenh and Z. Hassan: Mater Lett Vol. 506 (2010), p.343.

[2] F.K. Yam and Z. Hassan: Superlattices Microstruct; Vol. 43: 1 (2008).

[3] S Nakamura and Fasol G: The Blue Laser Diode Vol. 202 (1997. ).

[4] L. Dong, S. K. Yadav, R. Ramprasad and S. P. Alpay: Appl. Phys. Lett. Vol. 96 (2010), pp.202106-1.

[5] D. Doppalapudi, S.N. Basu, K.F. Ludwig and T.D. Moustakas: J. Appl. Phys. Vol. 84: (1998), p.1389.

[6] A Wakahara, T Tokuda, XZ Dang, S Noda and A Sasaki: Appl. Phys. Lett. Vol. 71: (1997), p.906.

[7] M.D. McCluskey, L.T. Romano, B.S. Krusor, D.P. Bour, N.M. Johnson and S. Brennan: Appl. Phys. Lett. Vol. 72 (1998), p.1730.

[8] H. Komaki, R. Katayama, K. Onabe, M. Ozeki, T. Ikari and J. Cryst: Growth Vol. 305: 12 (2007).

[9] K. Kisoda, K. Hirakura and H. Harima: Phys. Stat. Sol. Vol 6. (1997).

[10] I. Ho and G.B. Stringfellow: Appl. Phys . Lett. Vol. 69: 2701, (1996).

[11] A. Gokama, A. Gauthier-Brun, W. Liu, Y. Androussi, E. Dumont, E. Dogheche, J.H. Teng, S.J. Chua, D. Decoster: Appl. Phys. Lett. Vol. 96: 191909 (2010).

DOI: https://doi.org/10.1063/1.3425761

[12] A. Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken and A. Krost: J. Appl. Phys. Vol. 39: L11883 (2000).

[13] A. Dadgar, M. Poschenrieder, J. Blasing, K. Fehse, A. Dies and A. Krost: Appl. Phys. Lett. Vol. 80: 3670 (2002).

[14] A. Hussein , S. Thahab, Z. Hassan, W. Chin, A.H. Hassan, N.G. S: Journal of Alloys and Compounds Vol. 487: 24 (2009).

[15] B.D. Cullity: Elements of X-ray Diffractions. Addltion-Wesely, Reading, MA. 1978; 102.

[16] V. Bougrov, M. Levinshtein, S. Rumyantsev, A. Zubrilov: Gallium nitride (GaN), in: Levinshtein ME, Rumyantsev SL, Shur MS (Eds. ), Properties of Advanced Semiconductor Materials, GaN, AIN, InN, BN, SiC, SiGe, John Wiley & Sons, Inc., 2001, Chapter 1.

DOI: https://doi.org/10.1142/9789812832078

Fetching data from Crossref.
This may take some time to load.