Compare Study of Electronic Structure, Chemical Bonding and Elastic Properties of Ti3AC2 (A=Al, Si, Sn) by First-Principles


Article Preview

The electronic structure, chemical bonding and elastic properties of Ti3AC2 (A=Al, Si, Sn) were investigated by generalized gradient approximation (GGA) based on density functional theory (DFT). The calculated lattice parameters and equilibrium volumes are in good agreement with the available experimental data. The density of state (DOS) and partial density of states (PDOS) show that the DOS at the Fermi level (EF) is located at the bottom of a valley and originate mainly from the Ti-3d electrons. Population analyses suggest that there are strong covalent bonding in Ti1-C and Ti2-C atoms in Ti3AC2 (A=Al, Si, Sn). Single-crystal elasticity constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill’s approximations (VRH). The Young’s modulus Y, Poisson’s ratio ν and BH/GH are also predicted. Results conclude that the hexagonal phase Ti3AC2 (A=Al, Si, Sn) are mechanical stable and behaves in a brittle manner. Polycrystalline elastic anisotropy coefficients AB and AG are also derived from polycrystalline bulk modulus B and shear modulus G.



Edited by:

Jin Hu, Nanchun Chen and Cheng Zhang




F. J. Zeng and Q. L. Xia, "Compare Study of Electronic Structure, Chemical Bonding and Elastic Properties of Ti3AC2 (A=Al, Si, Sn) by First-Principles", Advanced Materials Research, Vol. 624, pp. 117-121, 2013

Online since:

December 2012




[1] M. W. Barsoum. The MN+1AXN Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates, Prog. Solid St. Chem. 28 (2000) 201-281.

[2] Z. M. Sun. Progress in research and development on MAX phases: a family of layered ternary compounds, Int. Mater. Rev. 56(3) (2011) 143-166.

[3] E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, M. W. Barsoum. MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis, Nucl. Engin. Des. 244 (2012).


[4] H. B. Zhang, Y. W. Bao and Y. C. Zhou. Current Status in Layered Ternary Carbide Ti3SiC2, a Review, J. Mater. Sci. Technol. 25(1) (2009) 1-38.

[5] X. H. Wang and Y. C. Zhou. Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review, J. Mater. Sci. Technol. 26(5) (2010) 385-416.


[6] Sylvain Dubois, Thierry Cabioc'h, Patrick Chartier, Ve´ronique Gauthier, and Michel Jaouen. A New Ternary Nanolaminate Carbide: Ti3SnC2, J. Am. Ceram. Soc., 90(8) (2007) 2642-2644.


[7] X. D. He, Y. L. Bai, Y. Chen, C. C. Zhu, M. W. Li, M. W. Barsoum. Phase Stability, Electronic Structure, Compressibility, Elastic and Optical Properties of a Newly Discovered Ti3SnC2: A First-Principle Study, J. Am. Ceram. Soc., 94(11) (2011).


[8] P. Finkel, M. W. Barsoum, J. D. Hettinger, S. E. Lofland and H. I. Yoo. Low-temperature transport properties of nanolaminates Ti3AlC2 and Ti4AlN3, Phys. Rev. B. 67 (2003) 235108.


[9] A. L. Ivanovskii and N. I. Medvedeva. Electronic structure of hexagonal Ti3AlC2 and Ti3AlN2, Mendeleev Commun. 9(1) (1999) 36-38.


[10] Y. C. Zhou, Z. M. Sun, X. H. Wang, S. Q. Chen. Ab initio geometry optimization and ground state properties of layered ternary carbides Ti3MC2 (M=Al, Si and Ge), J. Phys.: Cond. Matter, 13 (2001) 10001-10010.


[11] Y. C. Zhou, X. H. Wang, Z. M. Sun and S. Q. Chen. Electronic and structural properties of the layered ternary carbide Ti3AlC2, J. Mater. Chem. 11 (2001) 2335-2339.


[12] Y. W. Bao, Y. C. Zhou. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics, Mater. Letts. 57 (2003) 4018-4022.


[13] P. Finkel, M. W. Barsoum and T. El-Raghy. Low temperature dependence of the elastic properties of Ti4AlN3, Ti3Al1. 1C1. 8 , and Ti3SiC2, J Appl. Phys. 87(4) (2000) 1701-1703.


[14] P. Finkel, M. W. Barsoum and T. El-Raghy. Low temperature dependence of the elastic properties of Ti3SiC2, J. Appl. Phys. 85(10) (1999) 7123-7126.


[15] M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens Matter. 14(11) (2002) 2717-2744.


[16] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letts. 77 (1996) 3865-3868.


[17] D. Vanderblilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.


[18] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.


[19] T. H. Fisher, J. Almlof, General methods for geometry and wave-function optimization, J. Phys. Chem. 96 (1992) 9768-9774.

[20] P. Hermet, S. Goumri-Said, M. B. Kanoun, et al., First-principles investigation of the physical properties of magnesium nitrideboride, J. Phys. Chem. C. 113 (2009) 4997-5003.


[21] Q. L. Xia, J. H. Yi, Y. F. Li, et al., First-principles investigations of the band structure and optical properties of γ-boron, Solid State Commun. 150 (2010) 605-608.


[22] X. F. Hao, Y. H. Xu, Z. J. Wu, et al., Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B. 74 (2006) 224112.

[23] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London A. 65 (1952) 349-355.

[24] O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7) (1963) 909-917.


[25] D. H. Chung, W. R. Buessem, Anisotropy in Single Crystal Refractory Compounds, Plenum, New York, (1968).