Synthesis and Characterization of Bi2Al4O9 Powders


Article Preview

Bi2Al4O9 powders were prepared by sol-gel process. The precursors were heated at 500-800°C for 2h to obtain Bi2Al4O9 powder and X-ray diffraction (XRD), Differential thermal analysis (DTA), thermogravimetric analysis (TG), field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) techniques were used to characterize precursor and derived oxide powders. XRD analysis show that the powder is still amorphous after calcined at 500°C. The peaks of Bi2Al4O9 become sharp after calcined at 575°C though still existing some amorphous phase. After calcining at 675-800°C, the powder has fully turned into pure Bi2Al4O9 phase. The crystallization process can also be confirmed by DTA-TG and IR. Calcining the precursor at 575°C, the absorption bands at 527 cm-1, 738 cm-1, 777 cm-1, and 919 cm-1are observed, which are assigned to Bi2Al4O9 and becoming stronger and sharper with the increase of temperature.



Edited by:

Jin Hu, Nanchun Chen and Cheng Zhang




X. Y. Zhang et al., "Synthesis and Characterization of Bi2Al4O9 Powders", Advanced Materials Research, Vol. 624, pp. 34-37, 2013

Online since:

December 2012




[1] R. X. Fischer, H. Schneider, in: H. Schneider, S. Komarneni (Eds. ), Mullite, Wiley-VCH, Weinheim, 2005, 1-46, and 128-140.

[2] V. V. Volkov, A. V. Egorysheva, Photoluminescence in fast-response Bi2Al4O9 and Bi2Ga4O9 oxide scintillators, Opt. Mater. 5 (1996), 273-277.


[3] I. Bloom, M. C. Hash, J. P. Zebrowski, K. M. Myles, M. Krumpelt, Oxide-ion conductivity of bismuth aluminates, Solid State Ionics 53-56 (1992), 739-747.


[4] S. Ohmann, P. Fielitz, L. Dörrer, G. Borchardt, Th. M. Gesing, R. X. Fischer, C. H. Rüscher, J. C. Buhl , K. D. Becker , H. Schneider, Electrical conductivity of mullite-type Bi2Al4O9 ceramics in air, Solid State Ionics 211 (2012), 46-50.


[5] E. I. Speranskaya, V. M. Skorokov, G. M. Safronov, E. N. Gaidukov, Bismuth oxide–aluminium oxide system, Inorg. Mater. (USSR) 6 (7) (1970), 1201.

[6] S. W. Zha, J. G. Cheng, Y. Liu, X. G. Liu, G. Y. Meng, Electrical properties of pure and Sr-doped Bi2Al4O9 ceramics, Solid State Ionics 156 (2003), 197-200.


[7] I. Abrahams, 1 A. J. Bush, G. E. Hawkes, and T. Nunes, Structure and Oxide Ion Conductivity Mechanism in Bi2Al4O9 by Combined X-Ray and High-Resolution Neutron Powder Diffraction and 27Al Solid State NMR, Journal of Solid State Chemistry 147 (1999).


[8] T. Debnath, C. H. R uscher, P. Fielitz, S. Ohmann, G. Borchardt, Series of compositions Bi2(M'xM1-x)4O9 (M', M = Al, Ga, Fe; 0≤x≤1) with mullite-type crystal structure: Synthesis, characterization and 18O/16O exchange experiment, Journal of Solid State Chemistry 183 (2010).


[9] K. L. DaSilva, V. Sepelak, A. D uvel, A. PaesanoJr., H. Hahn, F. J. Litterst, P. Heitjans, K. D. Becker, Mechanochemical–thermal preparation and structural studies of mullite-type Bi2(GaxAl1-x)4O9 solid solutions, Journal of Solid State Chemistry 184 (2011).


[10] T. M. Gesing, R. X. Fischer, M. Burianek, M. Mühlberg, T. Debnath, C. H. Rüscher, J. Ottinger, J. C. Buhl, H. Schneider, Synthesis and properties of mullite-type (Bi1-xSrx)2(M11−yM2y)4O9−x (M = Al, Ga, Fe), Journal of the European Ceramic Society 31 (2011).


[11] A. Barabauskas, D. Jasaitis, A. Kareiva, Characterization of sol-gel process in the Y-Ba-Cu-O acetate-tartrate system using IR spectroscopy, Vib. Spectrosc. 28 (2002), 263-275.


[12] G. Socrates, Infrared and Raman characteristic group frequencies tables and charts, third ed, Wiley, Chichester, (2001).

[13] J. Livage, M. Henry, C. Sanchez, Prog. Solid State Chem. 18 (1988) 259-341.

[14] J. S. Hu, M. Misra, J. D. Miller, Characterization of adsorbed oleate species at the fluorite surface by FTIR spectroscopy, Int. J. Miner. Process. 18 (1986), 73-84.