A Strain-Induced Martensite Transformation Model for TRIP Steels in Cyclic Loading Condition


Article Preview

TRIP-assisted steels are ideal for lightweight automotive applications due to not only its high strength and ductility but also the fatigue resistance, which result from the special strengthening mechanism of phase transformation in deformation processes. In this paper, a kinematic transformation model is developed, based on shear-band intersections, to reasonably evaluate the transformation from austenite into martensite with cyclic loading. The transformation process is controlled by parameters, such as, increase temperature, transformation driving force, shear-band formation rate and shear-band intersection volume fraction, by which the influences of cyclic loading variables (such as, number of cycles, strain amplitude and frequency) on transformation from austenite into martensite are predicted. The microstructure volume fraction is tested by X-Ray to verify the model.



Edited by:

Liangzhong Jiang




W.J. Dan et al., "A Strain-Induced Martensite Transformation Model for TRIP Steels in Cyclic Loading Condition", Advanced Materials Research, Vol. 629, pp. 32-38, 2013

Online since:

December 2012




[1] Hu Z.G., Zhu P., Meng J., Fatigue properties of transformation-induced plasticity and dual-phase steels for auto-body lightweight: Experiment, modeling and application, Materials & Design, Volume 31, Issue 6, June 2010, Pages 2884-2890.

DOI: https://doi.org/10.1016/j.matdes.2009.12.034

[2] Chanani G. R., Antolovich S. D., low cycles fatigue of a high strength metastable austenitic steel. Metall Trans, 1974, 5(1): 217-229.

[3] Hilditch T. B., Timokhina I. B., et al., Cyclic deformation of advanced high-strength steels: mechanical behavior and microstructural analysis. Metallurgical and Materials Transactions A, 2009, 40(2): 342-353.

DOI: https://doi.org/10.1007/s11661-008-9732-x

[4] Robertson, L. T., Hilditch T. B., et al., The effect of prestrain and bake hardening on the low-cycle fatigue properties of TRIP steel. International Journal of Fatigue, 2008, 30(4): 587-594.

DOI: https://doi.org/10.1016/j.ijfatigue.2007.06.002

[5] Sugimoto K. I., Kobayashi M., et al., Cyclic deformation behavior of a transformation- induced plasticity-aided dual-phase steel. Metallurgical and Materials Transactions A, 1997, 28(12): 2637-2644.

DOI: https://doi.org/10.1007/s11661-997-0020-y

[6] Sugimoto K. I., Song S. M., et al., Effects of prestraining on low cycle fatigue properties of low alloy TRIP steels. Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50(6): 657-664.

DOI: https://doi.org/10.2472/jsms.50.657

[7] Nebel T., Eifler D., Cyclic deformation behaviour of austenitic steels at ambient and elevated temperatures. Sadhana-Academy Proceedings in Engineering Sciences, 2003, 28: 187-208.

DOI: https://doi.org/10.1007/bf02717133

[8] Stolarz J., Baffie N., et al., Fatigue short crack behaviour in metastable austenitic stainless steels with different grain sizes. Materials Science and Engineering a, 2001, 319: 521-526.

DOI: https://doi.org/10.1016/s0921-5093(01)01072-3

[9] Topic M., Tait R. B., et al., The fatigue behaviour of metastable (AISI-304) austenitic stainless steel wires. International Journal of Fatigue, 2007, 29(4): 656-665.

DOI: https://doi.org/10.1016/j.ijfatigue.2006.07.007

[10] Tomita Y., Shibutani Y., Estimation of deformation behavior of TRIP steels smooth/ringed-notched specimens under monotonic and cyclic loading. International Journal of Plasticity, 2000, 16(7): 769-789.

DOI: https://doi.org/10.1016/s0749-6419(99)00080-7

[11] Kaleta J., Zietek G., Representation of cyclic properties of austenitic steels with plasticity-induced martensitic transformation. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(8): 955-964.

DOI: https://doi.org/10.1046/j.1460-2695.1998.00086.x

[12] Krupp U., Christ H. J., et al., Influence of carbon concentration on martensitic transformation in metastable austenitic steels under cyclic loading conditions. Materials Science and Engineering a , 2001, 319: 527-530.

DOI: https://doi.org/10.1016/s0921-5093(01)01087-5

[13] Krupp U., West C. G., et al., Strain-induced martensite formation in metastable austenitic steels with varying carbon content. Zeitschrift Fur Metallkunde, 2002, 93(7): 706-711.

DOI: https://doi.org/10.3139/146.020706

[14] Krupp U., West C., et al., Deformation-induced martensite formation during cyclic deformation of metastable austenitic steel: Influence of temperature and carbon content. Materials Science and Engineering a, 2008, 481: 713-717.

DOI: https://doi.org/10.1016/j.msea.2006.12.211

[15] Smaga M., Walther F., Eifler D., Deformation-induced martensitic transformation in metastable austenitic steels. Materials Science & Engineering: A, Structural Materials: Properties, Microstructure and Processing, 2008, 483-484(1-2 C): 394-397.

DOI: https://doi.org/10.1016/j.msea.2006.09.140

[16] Chanani G.R., Antolovich S.D., Low cycle fatigue of a high strength metastable austenitic steel. Metallurgical Transactions A, 1974, 5(1): 217-229.

[17] Mughrabi H., Christ H. -J., Cyclic deformation and fatigue of selected ferritic and austenitic steels: Specific aspects. ISIJ International, 1997, 37(12): 1154-1169.

DOI: https://doi.org/10.2355/isijinternational.37.1154