[1]
N. Bachschmid, P. Pennacchi, E. Tanzi, Cracked Rotors - A Survey on Static and Dynamic Behavior Including Modelling and Diagnosis, Springer, Heidelberg-Berlin, 2010, p.9.
DOI: 10.1007/978-3-642-01485-7
Google Scholar
[2]
D. Momcilovic, Z. Odanovic, R, I. Atanasovska T. Vuherer, Failure Analysis of Hydraulic Turbine Shaft, Eng. Fail. Anal, 20 (2012) 54-66.
DOI: 10.1016/j.engfailanal.2011.10.006
Google Scholar
[3]
M.O. Popoviciu, I. Bordeasu, Analyzes of Fissures in Bulb Turbine Shafts, Machine Design, 3(4), ISSN 1821-1259, (2011) 233-240.
Google Scholar
[4]
I. Bordeasu, M.O. Popoviciu, L. Marsavina, M. Voda, R. Negru, L.D. Pirvulescu, Numerical Simulation of Fatigue Cracks Initiation and Propagation for Horizontal Axial Turbine Shafts, The 20th DAAAM International Symposium, Intelligent Manufacturing & Automation: Theory, Practice & Education, Proceedings on CD, 25-28th November (2009).
Google Scholar
[5]
I. Bordeasu, M.O. Popoviciu, D.M. Novac, Fatigue Studies upon Horizontal Hydraulic Turbine Shafts and Estimation of Crack Initiatioin, Machine Design, 1(1), ISSN 1821-1259, (2009) 183 – 186.
Google Scholar
[6]
I. Atanasovska, R. Mitrović, D. Momčilović, Influence of transition section of shaft with flange on stress concentration factor, The 7th International scientific conference, Research and development of mechanical elements and systems, Zlatibor, Serbia, (2011).
Google Scholar
[7]
GOST 977-88, Steel Castings. General Specification. (1988).
Google Scholar
[8]
EN 10293, Steel castings for general engineering uses. (2005).
Google Scholar
[9]
GOST 25. 502-79, Strength analysis and testing in machine building. Methods of metals mechanical testing. Methods of fatigue testing. (1979).
Google Scholar
[10]
V.T. Troschenko, Fatigue resistance of metals and alloys, Naukova Dumka. (1987) p.668–70 [in Russian].
Google Scholar
[11]
D. Taylor, Analysis of fatigue failures in components using the theory of critical distances, Engineering Failure Analysis, 12 (2005) 906–914.
DOI: 10.1016/j.engfailanal.2004.12.007
Google Scholar
[12]
R.C. Brooks, Metallurgical failure analysis. McGraw-Hill, New York, 1993, pp.6-11.
Google Scholar
[13]
D. Taylor, Applications of the theory of critical distances in failure analysis, Engineering Failure Analysis, 18 (2011) 543–549.
DOI: 10.1016/j.engfailanal.2010.07.002
Google Scholar
[14]
D. Taylor, L. Susmel, Giornata IGF Forni di Sopra (UD), Italy, March 7-9, ISBN 978-88-95940-35-9 (2011) 129-135.
Google Scholar
[15]
R.E. Peterson, Notch Sensitivity in: G. Sines, J.L. Waismas (Eds. ) Metal Fatigue, McGraw Hill, New York, 1959, pp.293-306.
Google Scholar
[16]
H. Neuber, Theory of Notch Stresses, translation of 1957 Edition in German, Springer, Berlin, (1958).
Google Scholar
[17]
S. Suresh, Fatigue of Materials, Cambridge University Press. ISBN 9780521578479 (1998) 30 -94.
Google Scholar
[18]
M.H. El Haddad, N.E. Dowling, T.H. Topper and K.N. Smith, J Integral Applications for Sort Fatigue Crack at Notches, International Journal of Fracture. 16 (1980) 15-30.
DOI: 10.1007/bf00042383
Google Scholar
[19]
D. Taylor, Theory of Critical Distances: A New Perspective in Fracture Mechanics, ISBN 978-0-08-044478-9, Elsevier Science, Oxford, (2007).
DOI: 10.1080/10426910801940417
Google Scholar
[20]
D. Taylor, Geometrical effects in fatigue: A unifying theoretical model, Int. J. Fatigue. 21 (1999) 413–20.
DOI: 10.1016/s0142-1123(99)00007-9
Google Scholar
[21]
I. Atanasovska, R. Mitrovic, D. Momcilovic, FEM model for calculation of Hydro turbine shaft, proceedings of the Sixth International Symposium KOD, Palić, Serbia, (2010) 183-188.
Google Scholar
[22]
D.W. Hoeppner, C. A Arriscorreta, Exfoliation Corrosion and Pitting Corrosion and their Role in Fatigue Predictive Modeling: State-of-the-Art Review, International Journal of Aerospace Engineering. 2012, doi: 10. 1155/2012/191879.
DOI: 10.1155/2012/191879
Google Scholar
[23]
S. Chattopadhyay, High Cycle Fatigue of Structural Components Using Critical Distance Methods, Proceedings of the SEM Annual Conference June 7-10, ISBN 978-1-4419-9497-4, The Society for Experimental Mechanics, Indianapolis, Indiana USA, (2010).
Google Scholar
[24]
S. M. Tipton, J. R. Sorem, R. D. Rolovic, Updated Stress Concentration Factors for Filleted Shafts in Bending and Tension, Journal of Mechanical Design, Transactions of the ASME, Vol. 118, (1997), 321-327.
DOI: 10.1115/1.2826887
Google Scholar
[25]
J. Shapiro, Streamlining shoulder-fillet stresses, MACHINE Design. com, (2009), 84-86.
Google Scholar