Fullerene Based Nanomaterials for Biomedical Applications: Engineering, Functionalization and Characterization


Article Preview

Since their discovery in 1985, fullerenes have attracted considerable attention. Their unique carbon cage structure provides numerous opportunities for functionalization, giving this nanomaterial great potential for applications in the field of medicine. Analysis of the chemical, physical, and biological properties of fullerenes and their derivatives showed promising results. In this study, functionalized fullerene based nanomaterials were characterized using near infrared spectroscopy, and a novel method - Aquaphotomics. These nanomaterials were then used for engineering a new skin cream formula for their application in cosmetics and medicine. In this paper, results of nanocream effects on the skin (using near infrared spectroscopy and aquaphotomics), and existing results of biocompatibility and cytotoxicity of fullerene base nanomaterials, are presented.



Edited by:

Aleksandar Subic




L. Matija et al., "Fullerene Based Nanomaterials for Biomedical Applications: Engineering, Functionalization and Characterization", Advanced Materials Research, Vol. 633, pp. 224-238, 2013

Online since:

January 2013




[1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature. 318 (1985) 162-163.

DOI: https://doi.org/10.1038/318162a0

[2] W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Hoffman, Solid C60: A new form of carbon, Nature. 347 (1990) 354-358.

DOI: https://doi.org/10.1038/347354a0

[3] D. Koruga, J. Simic-Krstic, M. Trifunovic, S. Jankovic, S. Hameroff, J. Withers, R. Loutfy, Imaging fullerene C60 with atomic resolution using a scanning tunnelling microscope, Fullerene Science and Technology. 1(1) (1993) 93-100.

DOI: https://doi.org/10.1080/15363839308015518

[4] P.R. Buseck, S.J. Tsipursky, R. Hettich, Fullerenes from the Geological Environment, Science. 257(5067) (1992) 215-217.

DOI: https://doi.org/10.1126/science.257.5067.215

[5] K. Sellgren, M.W. Werner, J.G. Ingalls, J.D.T. Smith, T.M. Carleton, C. Joblin, C60 reflection nebulae, The Astrophysical Journal Letters. 722(1) (2010) L54-L57.

DOI: https://doi.org/10.1088/2041-8205/722/1/l54

[6] Y. Zhang, S. Kwok, Detection on C60 in the protoplanetary nebula IRAS 01005+79140, The Astrophysical Journal. 730(2) (2011) 1-5.

DOI: https://doi.org/10.1088/0004-637x/730/2/126

[7] D. Koruga, S. Hameroff, J. Withers, R. Loutfy, M. Sundareshan, Fullerene C60: History, Physics, Nanobiology, Nanotechnology, North-Holland, Amsterdam, (1993).

DOI: https://doi.org/10.1002/ange.19941060734

[8] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zelinger, Wave-particle duality of C60 molecules, Nature. 401 (1999) 680-682.

DOI: https://doi.org/10.1038/44348

[9] L. Matija, Reviewing paper: Nanotechnology: Artificial Versus Self-Assembly, FME Transaction. 32 (2004) 1-14.

[10] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Physical Review Letters. 53(20) (1984) 1951-(1954).

DOI: https://doi.org/10.1103/physrevlett.53.1951

[11] W.G. Harter, D.E. Weeks, Rotation-vibration spectra of icosahedral molecules, J. Chem. Phys. 90(9) (1989) 4724-4743.

[12] E. Schrodinger, What is Life? Mind and Matter, Cambridge University Press, (1967).

[13] M. Rakocevic, The genetic code as a Golden mean determined system, BioSystems. 46 (1998) 283-291.

DOI: https://doi.org/10.1016/s0303-2647(98)00010-0

[14] D. Koruga, M. Rakocevic, N. Misic, L. Matija, S. Jankovic, A new classification of amino acids by module 3/2, Archive of Oncology. 5(3) (1997), 137-139.

[15] L. Matija, Dj. Koruga, J. Jovanović, D. Dobrosavljević, N. Ignjatović, In vitro and in vivo investigation of collagen - C60(OH)24 interaction, Materials Science Forum. 453-454 (2004) 557-563.

DOI: https://doi.org/10.4028/www.scientific.net/msf.453-454.561

[16] D. Koruga, Composition of matter containing harmonized hydroxyl modified fullerene substance, US Patent Number 8, 058, 483 B2, (2011).

[17] L. Matija, M. Papić-Obradović, Hydrogen bonding nanostructures for nanomedicine, Book of Abstracts of the International Conference on Water, Hydrogen Bonding Nanomaterials and Nanomedicine, Banja Luka, 2010, pp.23-24.

[18] L. Matija, D. Koruga, Golden Mean as a Driving Force of Self-Assembly, Proceeding 10th Foresight Conference on Molecular Nanotechnology, Bethesda, USA, 2002, p.32.

[19] L. R. Matija, R.N. Tsenkova, M. Miyazaki, K. Banba, J.S. Muncan, Aquagrams: Water spectral pattern as characterization of hydrogenated nanomaterial, FME Transactions. 40(2) (2012) 51-56.

[20] R. Tsenkova, Introduction to Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water, Journal of Near Infrared Spectroscopy. 17 (2009) 303-314.

DOI: https://doi.org/10.1255/jnirs.869

[21] R. Tsenkova, Aquaphotomics: Water the biological and aqueous world scrutinized with invisible light, Spectroscopy Europe. 22(6) (2010) 6-10.

[22] R. Tsenkova, I. Iordanova, K. Toyoda, D. Brown, Prion protein fate governed by metal binding. Biochemical and Biophysical Research Communications. 325 (2004) 1005-1012.

DOI: https://doi.org/10.1016/j.bbrc.2004.10.135

[23] J. Munćan, A comparative study of structure and properties of water by IR and Opto-magnetic spectroscopy, Book of Abstracts of the Second Scientific International Conference on Water and Nanomedicine, Banja Luka, (2011), pp.56-57.

[24] L. Matija, R. Tsenkova, Aquaphotomics of hydrogenated fullerenes, Book of Abstracts of the Second Scientific International Conference on Water and Nanomedicine, Banja Luka, (2011), pp.30-31.

[25] V.H. Segtnan, S. Šašić, T. Isaksson, Y. Ozaky, Studies on the Structure of Water Using Two-Dimensional Near-Infrared Correlation Spectroscopy and Principal Component Analysis, Analytical Chemistry. 73(13) (2001) 3153 -3161.

DOI: https://doi.org/10.1021/ac010102n

[26] Z. Golubovic, Studies of exclusion zones in water and aqueous solution, Book of Abstracts of the Second Scientific International Conference on Water and Nanomedicine, Banja Luka, (2011), pp.53-55.

[27] J. -M. Zheng, G.H. Pollack, Long-range forces extending from polymer-gel surfaces, Phys. Rev. E 2003, 68, 031408.

DOI: https://doi.org/10.1103/physreve.68.031408

[28] B. Chai, G.H. Pollack, Solute-free interfacial zones in polar liquids, Journal of Physical Chemistry B. 114(16) (2010) 5371-5375.

DOI: https://doi.org/10.1021/jp100200y

[29] F. Giacalone, N. Martín, Fullerene Polymers: Synthesis, Properties and Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2009).

[30] C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, A.M. Boyd, K.D. Ausman, Y.J. Tao, B. Sitharaman, L.J. Wilson, J.B. Hughes, J.L. West, V.L. Colvin, The Differential Cytotoxicity of Water-Soluble Fullerenes, Nanoletters. 4(10) (2004) 1881-1887.

DOI: https://doi.org/10.1021/nl0489586

[31] BIOMATECH™ - Cytotoxicity study report, (2009).