Application of POD Projection to Orientation Optimization of Laminated Composite Design

Abstract:

Article Preview

In the context of laminated composite design, the integrated stiffness of the laminate depends on the number of plies, the material and the orientation of the material in each ply. The main issue of design is the prohibitive numerical simulation cost, the early technique (DMO, discrete material optimization; BCP, Bi-value Coding Parameterization Method) consists in transforming the continuous orientation angle variables to discrete design variables as multiphase material selection problems. In this work, a set of continuous orientation angle is directly considered. More precisely, the design task is the orientation of the orthotropic material in each element of the discretization and the ratio of ply thickness. In order to reduce the computational effort, Proper Orthogonal Decomposition (POD) applied to decrease the number of design variables. The numerical results in a simple case show that the proposed method is available.

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Edited by:

Jianmin Zeng, Hongxi Zhu and Jianyi Kong

Pages:

1890-1895

DOI:

10.4028/www.scientific.net/AMR.634-638.1890

Citation:

M. Y. Xiao et al., "Application of POD Projection to Orientation Optimization of Laminated Composite Design", Advanced Materials Research, Vols. 634-638, pp. 1890-1895, 2013

Online since:

January 2013

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.