Structural and Photocatalytic Properties of CuO Nanorods Using the Hydrothermal Treatment Method

Abstract:

Article Preview

In this work optical properties of CuO nanostructure were studied. CuO nanostructure were synthesized by the hydrothermal treatment method. The structural and chemical natures of the obtained materials were studied using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and study optical properties by UV-visible spectral. The XRD patterns of the CuO nanostructures indicated that CuO phases (JCPDS 05- 0661). The top-view SEM images, it can be seen clearly that high-density, horizontally scattered nanorod were grown on the product prepared at concentration of NaOH (aq) 7.5 M at 180 C for 12 h. The spectral of UV-vis data recorded showed the strong cut off at 341 nm.

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Edited by:

Jianmin Zeng, Hongxi Zhu and Jianyi Kong

Pages:

2258-2260

Citation:

S. Noontasa et al., "Structural and Photocatalytic Properties of CuO Nanorods Using the Hydrothermal Treatment Method", Advanced Materials Research, Vols. 634-638, pp. 2258-2260, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] K. Nagase, Y. Zhang, Y. Kodama, J. Kakuta: Catal. Vol. 187 (1999), p.123–130.

[2] M. Frietsch, F. Zudock, J. Goschnick, M. Bruns: Sens. Actuat. B Vol. 65 (2000), p.379–381.

[3] P.C. Dai, H.A. Mook, G. Aeppli, S.M. Hayden, F. Dogan: Nature Vol. 406 (2000), p.965–968.

DOI: https://doi.org/10.1038/35023094

[4] X. Jiang, T. Herricks, Y.N. Xia: NanoLett. Vol. 2 (2002), p.1333–1338.

[5] M. Kaur, K.P. Muthe, S.K. Despande, S. Choudhury, J.B. Singh, N. Verma, S.K. Gupta, J.V. Yakhmi: Cryst. Growth Vol. 289 (2006), p.670–675.

DOI: https://doi.org/10.1016/j.jcrysgro.2005.11.111

[6] Y. He: Mater. Res. Bull. Vol. 42 (2007), p, 190–195.

[7] C. Yan, D. Xue: Phys. Chem. B Vol. 110 (2006), p.1581–1586.

[8] J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan: Alloys Compd. Vol. 454 (2008), p.268–273.

[9] L. Yu,G. Zhang, Y. Wu, X. Bai, D. Guo: Cryst. Growth Vol. 310 (2008), p.3125–3130.

[10] J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu: Mater. Lett. Vol. 61 (2007), p.5236–5238.

[11] G. -Q. Yuan, H. -F. Jiang, C. Lin, S. -J. Liao: Cryst. Growth Vol. 303 (2007), p.400–406.

[12] H. Zhang, S. Li, X. Ma, D. Yang: Mater. Res. Bull. Vol. 43 (2008), 1291–1296.

[13] M. Zhang, X. Xu, M. Zhang: Mater. Lett. Vol. 62 (2008), p.385–388.

[14] M. -G. Ma, Y. -J. Zhu: Alloys Compd. Vol. 455 (2008), p. L15–L18.

[15] X. -L. Tang, L. Ren, L. -N. Sun, W. -G. Tian, M. -H. Cao, C. -W. Hu: Chem. Res. Chin. Univ. Vol. 22 (2006), p.547–551.

[16] X. Song, H. Yu, S. Sun: Colloid Interf. Sci. Vol. 289 (2005), p.588–591.

[17] D. Keyson, D.P. Volanti, L.S. Cavalcante, A.Z. Sim๕es, J.A. Varela, E. Longo: Mater. Res. Bull. Vol. 43 (2008), p.771–775.

[18] X. Xu, M. Zhang, J. Feng, M. Zhang: Mater. Lett. Vol. 62 (2008), p.2787–2790.