Chitosan Induced Synthesis of EuPO4 Nanoparticles on Fiber Templates for Live Imaging

Abstract:

Article Preview

EuPO4 nanoparticle was synthesized using chitosan induced mechanism. The nanoparticles were formed after calcination inside a fiber template. The nanoparticles were characterized by Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Fluorespectrometer. The synthesized EuPO4 nanoparticles with nano-pore structures presented the excitation peaks located at about 375nm and 500nm and the emission peaks located at 590-620nm and 750nm, respectively. Live imaging was performed in in-vitro cell culture. The nanoparticles were biocompatible and could be intake by cells. Cells with nanoparticles showed fluorescent signals for imaging, which indicate the potential application of these particles for live imaging.

Info:

Periodical:

Edited by:

Tingting Wang

Pages:

117-123

Citation:

B. Xue et al., "Chitosan Induced Synthesis of EuPO4 Nanoparticles on Fiber Templates for Live Imaging", Advanced Materials Research, Vol. 647, pp. 117-123, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] S. Ben-David Makhluf, R. Arnon, C. R. Patra, D. Mukhopadhyay, A. Gedanken, P. Mukherjee, and H. Breitbart, J. Phys. Chem. C Vol. 112(2008), p.12801.

DOI: https://doi.org/10.1021/jp804012b

[2] C. Zollfrank, H. Scheel, S. Brungs and P. Greil, Cry. Growth Des. Vol. 8(2008), p.766.

[3] Karsten Ko¨mpe, Olaf Lehmann and Markus Haase, Chem. Mater. Vol. 18(2006), p.4442.

[4] F. N. Shi, L. Cunha-Silva, R. A. Sa´ Ferreira, L. Mafra, T. Trindade, L. D. Carlos, F. A. Almeida Paz and J. Rocha, J. AM. CHEM. SOC. Vol. 130(2008), pp.150-167.

[5] S.A. Georgios , M. Schneider and S. E. Pratsinis, J. Phys. Chem. C Vol 116(2012), p.4493.

[6] C. Lorbeer, J. Cybinska and A. -V. Mudring, Cryst. Growth Des. Vol 11(2011), pp.1040-1048.

[7] V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan and D. E. Williams, Anal. Chem. Vol. 84(2012), p.487.

[8] F. Meiser, C. Cortez, . Angew. Chem., Int. Ed. Vol 43(2004), p.5954.

[9] F. Zhang, S.S. Wong. ACS Nano Vol 4(2010), 4, p.99.

[10] W. Di, N. Shirahata, A. Zheng, Y. Sakka. Nanotechnology Vol 21(2010), p.365501.

[11] T. W. Kim, P. W. Chung, I. I. Slowing, M. Tsunoda, Nano Lett. Vol 8(2008), p.3724.

[12] J. Liu, A. Stace-Naughton, X. Jiang,; Brinker, C. J. J. Am. Chem. Soc. Vol 131(2009), p.1354.

[13] Q. Luo, S. Shen, G. Lu, X. Xiao, D. Mao, Y. J. Wang. Mater. Chem. Vol 19(2009), p.8079.

[14] O. Lehmann, K. Ko¨mpe and M. Haase, J. AM. Chem. SOC. Vol 126(2004), p.14935.

[15] S. M. Borisov† and O. S. Wolfbeis, Chem. Rev. Vol 108(2008), pp.423-461.

[16] R. Yan, X. Sun, X. Wang, Q. Peng, Y. Li, Chem. Eur. J. Vol 11(2005), pp.2183-2195.

[17] R. J. Kijkowska. Mater. Sci. Vol 38(2003), pp.229-233.

[18] J. Dexpert-Ghys, R. Mauricot, Faucher, M. D. J. Lumin. 1996, 69, p.203.

[19] G. Li, K. Chao, H. Peng and K. Chen, J. Phys. Chem. C Vol 112(2008), p.6228.

[20] S. Wang, F. Gu, C. Li and M. Lü, Cry Growth Des, Vol 7(2007), p.2670.

[21] D. G. Shchukin, and Mo¨hwald G. B. Phys. Chem. B, Vol 108(2004), p.19109.

[22] M, G. Ewa, D. T. Krystyna, J. J. Sun, D. Dosi, M. K. Ian, Sergiey, and Y. Marek. J. Am. Chem. Soc. Vol 128(2006), 128, p.14498.