2D Model of Capillary Transport of Water in Aerated Concrete

Abstract:

Article Preview

Aerated concrete from the viewpoint of the transport of liquid moisture appears to be a material with highly variable properties strongly dependent on the porosity and liquid water exposure conditions. Saturation degree of aerated concrete strongly affects not only all its thermal-technical properties, but regarding to the risk freezing, also the strength properties. To predict the degree of saturation and moisture distribution, we used certain mathematical and physical methods supplemented with experimentally identified parameters. The aim of this paper is to discuss existing approaches to model capillary moisture transport in aerated concrete and description of the new, simplified 2D computer mathematical-physical model for the solution of this phenomenon. The results of the model are compared with experiments carried out. The conclusion discusses the limits of this new model, and mentions further possibilities for its improvement.

Info:

Periodical:

Main Theme:

Edited by:

Miloš Kalousek, Martin Němeček and Lukáš Chuchma

Pages:

287-290

Citation:

O. Sikula and M. Mohapl, "2D Model of Capillary Transport of Water in Aerated Concrete", Advanced Materials Research, Vol. 649, pp. 287-290, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] H. Janssen, B. Blocken, J. Carmeliet. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. Int J Heat Mass Transfer. 2007; 50(5-6): 1128-40.

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.048

[2] M. Krus, Feuchtetransport und Speicherkoeffizienten poröser mineralischer Baustoffe Theoretische Grundlagen und neue Messtechniken. Dissertation Universität Stuttgart (1995).

[3] M. Krus, H. M. Künzel, Flüssigtransport im Übersättigungsbereich. IBP-Mitteilung 22. Frauenhofer Institut für Bauphysik. (1995).

[4] H. M. Künzel, Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten. Dissertation Universität Stuttgart (1994).

[5] R. H. Peuhkuri, C. Rode, Moisture Dynamics in Building Envelopes. (BYG-Rapport; No. R-071), (2003).

[6] M. Krus, A. Holm, Approximationsverfahren für die Bestimmung feuchtetechnischer Materialkennwerte. Frauenhofer Institut für Bauphysik.

[7] A. Holm, M. Krus, H.M. Künzel, Approximation der Feuchtespeicherfunktion aus einfach bestimmbaren Kennwerten. IBP-Mitteilung 29. Frauenhofer Institut für Bauphysik. (2002).

[8] M. Krus, K. Lenz, R. Plagge, G. Scheffler, Ein Trocknungskoeffizient als neuer hygrothermischer Standardmaterialkennwert.

[9] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, (1980).