A Thermo-Dynamical Constitutive Model Based on Kinetic Approach for Shape Memory Materials

Abstract:

Article Preview

The technological application of nickel–titanium shape memory alloys (SMA) requires a constitutive model that can be easily implemented into numerical methods. For these reasons, macroscopic constitutive models have gained ground in SMA designs. A new model is developed that encompasses all the characteristics of these materials over the whole range of transformation temperatures, several macro-mechanical properties and evolution of martensite fraction. A finite element scheme is proposed to solve a semi-inverse dynamic problem. For a prescribed temperature range and external stress-boundary conditions, the outcomes are the possibility to identify the required electrical current density.

Info:

Periodical:

Edited by:

Tan Jin

Pages:

42-48

DOI:

10.4028/www.scientific.net/AMR.651.42

Citation:

N. Pellegrini "A Thermo-Dynamical Constitutive Model Based on Kinetic Approach for Shape Memory Materials", Advanced Materials Research, Vol. 651, pp. 42-48, 2013

Online since:

January 2013

Export:

Price:

$35.00

[1] Aggogeri, F., Gentili, E. Six Sigma methodology: An effective tool for quality management, International Journal of Manufacturing Technology and Management. Volume 14, Issue 3-4, (2008) pp.289-298.

DOI: 10.1504/ijmtm.2008.017728

[2] Gentili, E., Aggogeri, F., Mazzola, M. The effectiveness of the quality function deployment in managing manufacturing and transactional processes, ASME International Mechanical Engineering Congress and Exposition, Proceedings, 3, (2008).

DOI: 10.1115/imece2007-43448

[3] Bo Z., Lagoudas D. C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations, International Journal of Engineering Science 37, Pergamon, (1999), pp.1089-1140.

DOI: 10.1016/s0020-7225(98)00113-x

[4] Borboni, A., Aggogeri, F., Pellegrini, N., Faglia, R. Innovative Modular SMA Actuator, Advanced Materials Research Vol. 590 (2012), pp.405-410.

DOI: 10.4028/www.scientific.net/amr.590.405

[5] Borboni, A., Bussola, R., Faglia, R., Magnani, P.L., Menegolo, A. Movement optimization of a redundant serial robot for high-quality pipe cutting, Journal of Mechanical Design, Transactions of the ASME, 130 (8), (2008).

DOI: 10.1115/1.2918907

[6] Aggogeri, F., Borboni, A., Merlo, A., Pellegrini, N. Machine Tools thermostabilization using passive control strategies, Advanced Materials Research Vol. 590 (2012), pp.252-257.

DOI: 10.4028/www.scientific.net/amr.590.252

[7] Aggogeri, F., Al-Bender, F., Brunner, B., Elsaid, M., Mazzola, M., Merlo, A., Ricciardi, D., de la O Rodriguez, M., Salvi, E. Design of piezo-based AVC system for machine tool applications, Mechanical Systems and Signal Processing, (2011).

DOI: 10.1016/j.ymssp.2011.06.012

[8] Borboni, A., Aggogeri, F., Pellegrini, N., Faglia, R. Precision Point Design of a CAM Indexing Mechanism, Advanced Materials Research Vol. 590 (2012), pp.399-404.

DOI: 10.4028/www.scientific.net/amr.590.399

[9] Brinson L. C., Huang M. S. Simplifications and Comparisons of Shape Memory Alloy Constitutive Models, Journal of Intelligent Material Systems and Structures, SAGE Publications, (1996), pp.108-114.

DOI: 10.1177/1045389x9600700112

[10] Bekker A., Brinson L. C. Temperature-induced phase transformation in a shape memory alloy: phase diagram based kinetics approach, Journal of Mechanical Physics Solids 45, Pergamon, (1997), pp.949-988.

DOI: 10.1016/s0022-5096(96)00111-1

[11] Liang, C., Rogers, C.A. One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials, Journal of Intelligent Material Systems and Structures 1(2), SAGE Publications, (1990), pp.207-234.

DOI: 10.1177/1045389x9000100205

[12] Bhattacharyya, A., Faulkner, M.G., Amalraj, J.J. Finite element modeling of cyclic thermal response of shape memory alloy wires with variable material properties, Computational Materials Science 17, Elsevier, (2000), pp.93-104.

DOI: 10.1016/s0927-0256(99)00084-1

[13] Boyd, J.G., Lagoudas, D.C. A thermodynamical constitutive model for shape memory materials Part I: the monolithic shape memory alloy, Int. J. Plasticity 12, (1996), pp.805-842.

DOI: 10.1016/s0749-6419(96)00030-7

[14] Amici, C., Borboni, A., Faglia, R. A compliant PKM mesomanipulator: Kinematic and dynamic analyses, Advances in Mechanical Engineering, (2010), art. no. 706023.

DOI: 10.1155/2010/706023

[15] Tanaka Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys, International Journal of Plasticity 1, Elsevier, (1986), pp.59-72.

DOI: 10.1016/0749-6419(86)90016-1

[16] Borboni, A., Faglia, R. Stochastic Evaluation and Analysis of Free Vibrations in Simply Supported Piezoelectric Bimorphs, (in press) Journal of Applied Mechanics, Transactions ASME, DOI http: /dx. doi. org/10. 1115/1. 4007721.

DOI: 10.1115/1.4007721

In order to see related information, you need to Login.