First-Principles Calculation of Electronic Structure of the Cu–Doped Pyrite FeS2

Abstract:

Article Preview

Structure stability and electronic properties of Cu-doped FeS2 were studied using the first principle calculations based on plane wave pseudo-potential theory. The calculated results revealed that the band-gap Eg of Cu-doped FeS2 was 0.47 eV. The valence band of the density of state (DOS) was mostly due to the Cu 3d and S p orbitals. The bottom part of conduction band was mostly due to the Fe 3d orbitals. The calculated covalent character of the Fe–S bonds gave large delocalization of the spin resulting in smaller values. The Cu, Fe and S had the spin compensated leading to configuration s0.47 p0.61d9.78, Fe s0.27p0.58d7.03, S s1.83p4.23, respectively. The tetrahedral environment of the Fe and Cu and the relatively weak field of the S2− ligand were consistent to the Fe3+ and Cu+.

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Edited by:

Zhengyi Jiang, Xianghua Liu, Sihai Jiao and Jingtao Han

Pages:

590-593

Citation:

J. L. Fan and S. K. Lu, "First-Principles Calculation of Electronic Structure of the Cu–Doped Pyrite FeS2", Advanced Materials Research, Vols. 652-654, pp. 590-593, 2013

Online since:

January 2013

Export:

Price:

$41.00

[1] Ennaoui A, Fiechter S, Pettenkofer C, Alonso-Vante N, Buker K, Bronold M, Hopfner C, Tributsch H, 1993 Sol. Energy Mater. Sol. Cells 29 289.

DOI: https://doi.org/10.1016/0927-0248(93)90095-k

[2] Buker K, Alonso-Vante N, Tributsch H, 1992 J. Appl. Phys. 72 5721.

[3] Forrest K, Yan D, Dunne R, 2001 Min. Eng. 14 227.

[4] Pettenkofer C, Jaegermann W, Bronold M, Bunseges B, 1991 Phys. Chem. 95 560.

[5] Laajalehto K, Kartio I, Suoninen E, 1997 Inter. J Min. Proc. 51 163.

[6] Aselage T L, Emin D and McCready S S, 2001 Phys. Rev. B 64 054302.

[7] Francesco M, Nathalie V and Chris J P, 2001 Phys. Rev. Lett. 87 085506-3.

[8] Rosso K M, Becker U, Hochella M F, 1999 Am. Mineral. 84 1549.

[9] Hung A, Muscat J , Yarovsky I, Russo S P , 2002 Surf. Sci. 513 511.

[10] Hung A, Muscat J , Yarovsky I, Russo S P , 2002 Surf. Sci. 520 111–119.

[11] Qiu G Z, Xiao Q, Hu Y H, 2004 Comput. Mater. Sci. 29 89–94.

[12] Cláudio de O, Hélio Anderson D, 2010 Appl. Sur. Sci. 257 1319–1324.

[13] Du Y D, Chen W K, Zhang Y F, Guo X, 2011 J Nat. Gas Chem. 20 60–64.

[14] Vadkhiya L, Ahuja B L, 2011 J Alloy and Comp. 509 3042–3047.

[15] Ferrer I J , Caballero F, De las Heras C, Sánchez C, 1994 Solid Stat. Comm. 89(4) 349–352.

[16] Perdew J P, Burke K and Emzerhof M 1996 Phys. Rev. Lett. 77 3865-3868.

[17] Yu L, Ru H Q, Jiang Y L, Zuo L and Xue X X, 2008 the Min. Met. s & Mat. Soc. 1 189-193.

[18] Calandra M, Vast N and Mauri F 2004 Phys. Rev. B 69 224505.

[19] Xiao B, Feng J, Chen J C, Yu L 2007 Chem. Phy. Let. 448 35-40.

[20] Yu L, Lu S K, Jiang Y L, Xiao B, Tang X, Ru H Q, 2011 Procedia Engineering 12 229-235.

[21] Ferrer I J , De las Heras C , Sánchez C, 1993 Appl. Sur. Sci. 70–71( 2) 588–592.

[22] A. Rais, A.M. Gismelseed, A.D. Al-Rawas, 2000 Mater. Lett. 46 349–353.

[23] Abd El Halim A M, Fiechter S, Tributsch H, 2002 Electrochimica Acta 47(16) 2615–2623.

DOI: https://doi.org/10.1016/s0013-4686(02)00122-6

[24] Edelbro R , Sandstrom A , Paul J , 2003 Appl. Surf. Sci. 206 300–313.

[25] De Leeuw N H, Parker S C , Sithole H M, Ngoepe P E, 2000 J Phy. Chem. B 104 7969.

[26] Harmer S L, Thomas J E, Fornasiero D, Gerson A R, Geochim, 2006 Cosmochim. Acta 70 4392–4402.