Effect of Different Concentrations of Nitric Acid on the Conductivity of Single-Walled Carbon Nanotube Transparent Films


Article Preview

Single-walled carbon nanotubes were dispersed in deionized water with sodium dodecyl benzene sulfonate as surfactant. The solutions were sprayed on UV and plasma treated polyethylene terephthalate to achieve transparent conductive films with excellent adhesion. The carbon nanotube films were further treated with different concentrations of nitric acid to improve conductivity. SWCNTs and films were characterized by thermo gravimetric analysis, field-emitting scanning electron microscopy, UV-VIS spectrophotometer, four-point probe method, and Raman spectroscopy. The results demonstrated that the conductivity of carbon nanotube films with high transparency was improved to a greater degree with higher concentration of nitric acid due to effectively removing residual surfactants. The low sheet resistance films of ~100 Ω/sq @ 80T% have widely applications in touch screen, flat panel displays, organic light emitting diode, and etc.



Edited by:

Guohui Yang




J. Gao et al., "Effect of Different Concentrations of Nitric Acid on the Conductivity of Single-Walled Carbon Nanotube Transparent Films", Advanced Materials Research, Vol. 658, pp. 3-7, 2013

Online since:

January 2013




[1] A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim and D. Tománek: Science Vol. 269 (1995), p.1550.

[2] B.J. Yoon, E.H. Hong, S.E. Jee, D.M. Yoon, D.S. Shim, G.Y. Son, Y.J. Lee, K.H. Lee, H.S. Kim and C.G. Park: J. Am. Chem. Soc. Vol. 127 (2005), p.8234.

[3] C.D. Dimitrakopoulos and P.R. L. Malenfant: Adv. Mater. Vol. 14 (2002), p.99.

[4] E. C-W. Ou, L. Hu, G.C.R. Raymond, O.K. Soo, J. Pan, Z. Zhang, Y. Park, D. Hecht, G. Irvin, P. Drzaic and G. Gruner: ACS NANO Vol. 3 (2009), p.2258.

DOI: https://doi.org/10.1021/nn900406n

[5] A.G. Aberle: Thin Solid Films Vol. 517 (2009), p.4706.

[6] S. Iijima: Nature Vol. 354 (1996), p.56.

[7] Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard and A.G. Rinzler: Science Vol. 305 (2004), p.1273.

[8] H. -Z. Geng, D.S. Lee, K.K. Kim, G.H. Han, H.K. Park and Y.H. Lee: Chem. Phys. Lett. Vol. 455 (2008), p.275.

[9] H. -Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang and Y.H. Lee: J. Am. Chem. Soc. Vol. 129 (2007), p.7758.

[10] H. -Z. Geng, D.S. Lee, K.K. Kim, S.J. Kim, J.J. Bae and Y.H. Lee: J. Korean Phys. Soc. Vol. 53 (2008), p.979.

[11] A.J. Blanch, C.E. Lenehan and J.S. Quinton: J. Phys. Chem. B. Vol. 114 (2010), p.9805.

[12] M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson and A. G. Yodh: Nano Lett. Vol. 3 (2003), p.269.

[13] H. Tantang, J.Y. Ong, C.L. Loh, X. Dong, P. Chen, Y. Chen, X. Hu, L.P. Tan and L. -J. Li: Carbon Vol. 47 (2009), p.1867.

[14] J.W. Jo, J.W. Jung, J.U. Lee and W.H. Jo: ACS NANO Vol. 4 (2010), p.5382.

[15] L. Kavan and L. Dunsch: Chem. Phys. Chem. Vol. 8 (2007), p.974.

[16] K.K. Kim, J.J. Bae, H.K. Park, S.M. Kim, H. -Z. Geng, K.A. Park, H. -J. Shin, S. -M. Yoon, A. Benaya, J. -Y. Choi and Y.H. Lee: J. Am. Chem. Soc. Vol. 130 (2008), p.12757.

[17] Q. Liu, T. Fujigaya, H. -M. Cheng and N. Nakashima: J. Am. Chem. Soc. Vol. 132 (2010), p.16581.

[18] S. Manivannan, J.H. Ryu, J. Jang and K.C. Park: J Mater Sci: Mater Electron. Vol. 21 (2010), p.595.

[19] K.K. Kim, J.S. Park, S.J. Kim, H. -Z. Geng, K.H. An, C. -M. Yang, K. Sato, R. Saito and Y.H. Lee: Phys. Rev. B. Vol. 76 (2007), p.205426.