Fabrication and Methyl Blue Adsorption Kinetics of α-Fe2O3 Nanotubes by Electrospinning

Abstract:

Article Preview

The α-Fe2O3 nanotubes were prepared by the eletrospinning and calcination process. The as-prepared α-Fe2O3 nanotubes were characterized by XRD, SEM and BET. The XRD patterns show that the nanotubes with a pure hematite phase (α-Fe2O3) are obtained after calcination at 550 oC. The SEM morphologies and BET measurement demonstrate the nanotubes have an average diameter of 200-300 nm and a specific surface area of 15.1 m2/g. Their adsorption of methyl blue was studied with ultraviolet spectrophotometer (UV) to measure the concentration of methyl blue in aqueous solution, and the adsorption kinetics is basically in agreement with the pseudo-second-order kinetic model in the methyl blue concentration range of 100-300 mg/L.

Info:

Periodical:

Edited by:

Jin Yun and Dehuai Zeng

Pages:

302-307

Citation:

Q. J. Wang et al., "Fabrication and Methyl Blue Adsorption Kinetics of α-Fe2O3 Nanotubes by Electrospinning", Advanced Materials Research, Vol. 699, pp. 302-307, 2013

Online since:

May 2013

Export:

Price:

$38.00

[1] S. Shariati, M. Faraji, Y. Yamini and A.A. Rajabi: Desa. 270 (2011) 160.

[2] V.K. Gupta, I. Ali and V.K. Saini: J. Colloid Interf. Sci. 315 (2007) 87.

[3] V.K. Gupta, A. Mittal, L. Kurup and J. Mittal: J. Colloid Interf. Sci. 304 (2006) 52.

[4] A.Z.M. Badruddoza, Goh Si Si Hazel, K. Hidajat and M.S. Uddin: Colloid. Surface. A 367 (2010) 85.

[5] T.H. Kim, C. Park, J. Yang and S. Kim: J. Hazard. Mater. 112 (2004) 95.

[6] Y. He, G.M. Li, H. Wang, J.F. Zhao, H.X. Su and Q.Y. Huang: J. Membrane Sci. 32 (2008) 183.

[7] Z.Y. Zhang and J.L. Kong: J. Hazard. Mater. 193 (2011) 325.

[8] L. Peng, P.F. Qin, M. Lei, Q.R. Zeng, H.J. Song, J. Yang, J.H. Shao, B.H. Liao and J.D. Gu: J. Hazard. Mater. 209­210 (2012) 193.

[9] S.Y. Mak and D.H. Chen: Dyes Pigments 61 (2004) 93.

[10] F.C. Wu, R.L. Tseng and R.S. Juang: J. Colloid Interf. Sci. 283 (2005) 49.

[11] C.H. Wu: J. Hazard. Mater. 144 (2007) 93.

[12] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo and P.D. Yang: Science 292 (2001) 1897.

[13] Z.R. Dai, J.L. Gole, J.D. Stout and Z. L Wang: J. Phys. Chem. B 106 (2002) 1274.

[14] Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen and S.X. Wang: Appl. Phys. Lett. 78 (2001) 1125.

[15] X. Wang and Y.D. Li: J. Am. Chem. Soc. 124 (2002) 2880.

[16] H.S. Hafez: Physica E 44 (2012) 1522.

[17] J.S. Hu, L.S. Zhong, W.G. Song and L.J. Wan: Adv. Mater. 20 (2008) 2977.

[18] L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song and L.J. Wan: Adv. Mater. 18 (2006) 2426.

[19] N. Caliskan, A.R. Kul and S. Alkan: J. Hazard. Mater. 193 (2011) 27.

[20] Y.S. Ho and G. McKay: Chem. Eng. J. 70 (1998) 115.

[21] H. Al-Johani and M.A. Salam: J. Colloid Interf. Sci. 360 (2011) 760.