Fabrication of a Large-Scale Conductive Composite Film Containing Electrically Aligned Carbon Nanotubes


Article Preview

Application of high electric field is effective for the alignment of carbon nanotubes (CNTs) in a nanocomposite film. The conventionally used one pair of parallel plate electrode is not applicable to large-sized nanocomposite fabrication due to limited output voltage of high voltage source. We have proposed a new method using parallel array electrode system to prepare large-scale conductive composite film containing aligned CNTs. In the electrode system, the electric field generated by an array of interdigitated parallel wire electrodes was applied to the CNTs by using an electric field averaging scheme. The array electrode system made a large-scale (15 × 15 cm2) composite film containing uniformly aligned CNTs. In this study, we investigated the relationship between weight fraction of the CNTs and electrical conductivity of the composite film. Measurement of the surface electric potential of the composite film after corona discharge exposure revealed that the film with an electrical conductivity increased by electric field-induced CNTs alignment could serve as an antistatic film.



Edited by:

Jin Yun and Dehuai Zeng






Y. Kitamura et al., "Fabrication of a Large-Scale Conductive Composite Film Containing Electrically Aligned Carbon Nanotubes", Advanced Materials Research, Vol. 699, pp. 513-518, 2013

Online since:

May 2013




[1] Y.X. Zhou, P.X. Wu, Z. -Y. Cheng, J. Ingram and S. Jeelani, eXPRESS Poly. Lett., Vol. 2 (2008), p.40 Fig. 4 Effects of electricfield and CNT weightfraction on CNT composite film conductivity.

[2] M. Foygel, R.D. Morris, D. Anez, S. French and V.L. Sobolev, Phys. Rev. B., Vol. 71 (2005), No. 104201.

[3] J. Hone, M. Whitney, C. Piskoti and A. Zettl, Synthetic metals., Vol. 103 (2004), p.2498.

[4] J. Robertson, Materialstaday, Vol. 7, (2004), p.46.

[5] T. Ishikawa, Adv. Composite Mater., Vol. 15 (2006), p.33.

[6] S. Shoji, H. Suzuki, R.P. Zaccaria, Z. Sekkat and S. Kawata, Phys. Rev., Vol. 77 (2008), No. 153407.

[7] N. Adachi, T. Fukawa, Y. Tatewaki, H. Shirai and M. Kimura, Macromol Rapid Commun, Vol. 29 (2008), p.1877.

[8] M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo and S. Volz, Adv. Mater., Vol. 22(2010), p.1654.

[9] G.H. Yu, X.L. Li, C.M. Lieber and A.Y. Cao, J. Mater. Chem., Vol. 18 (2008), p.728.

[10] K. Iakoubovskii, Cent. Eur. J. Phys., Vol. 7 (2009), p.645.

[11] P.M. Ajayan, O. Stephan, C. Colliex and D. Trauth, Science, Vol. 265 (1994), p.1212.

[12] M.W. Wang, Jpn. J. Appl. Phys., Vol. 48 (2009), No. 035002.

[13] C. Park, J. Wilkinson, S. Banda, Z. Qunaies, K.E. Wise, G. Sauti, P.T. Lillehei and J.S. Harrison, Polymer Phys., Vol. 44 (2006), p.1751.

[14] Y. Tian, J.G. Park, Q.F. Cheng, Z.Y. Liang and C. Zhang, Nanotechnology, Vol. 20 (2009), No. 335601.

[15] M. Abdalla, D. Dean, M. Theodore, J. Fielding, E. Nyairo and G. Piece, Polymer, Vol. 51 (2010), p.1614.

[16] R. Basu and G.S. Iannacchione, Phys. Rev., Vol. 81 (2010), No. 051705.

[17] Y.F. Zhu, C. Ma, W. Zhang, R.P. Zhang, N. Koratkar and J. Liang, J. Appl. Phys., Vol. 105 (2009), No. 054319.

[18] A. Sharma, C.E. Bakis and K.W. Wang, J. Phys. D: Appl. Phys., Vol. 43 (2010), No. 175402.

[19] J.G. Smith, D. M. Delozier, J.W. Connell and K.A. Watson, Polymer, Vol. 45 (2004), p.6133.

[20] Y. Huang, N. Li, Y. Ma, F. Du, F. Li and X. He, Carbon, Vol. 45 (2007), p.1614.

[21] W. Sun, H. Tomita, S. Hasegawa, Y. Kitamura, M. Nakano, J. Suehiro, J. Phys. D: Appl. Phys., Vol. 44 (2011), No. 445303.

In order to see related information, you need to Login.