FISH Analysis of Bacterial Attachment to Copper Sulfides in Bioleaching Processes


Article Preview

Bioleaching is the biological conversion of an insoluble metal compound into a water soluble form. In this process metal sulfides are oxidized to metal ions and sulfate by acidophilic microorganisms capable of oxidizing Fe2+ and/or sulfur-compounds. The metal solubilization from sulfide minerals is a chemical process which requires Fe3+ reduction. It is an environmentally friendly technique and an economical method for recovering metals that requires low investment and operation costs. In this work we studied the bioleaching of two kinds of acid-soluble copper sulfides, one easily leached by mesophilic bacteria (covellite), and the other one refractory to their activity (chalcopyrite), in acidic media with or without Fe2+ ions. We studied attached and planktonic populations of autotrophic bacteria, such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans in pure or mixed cultures. The influence of a heterotrophic microorganism, Acidiphilium cryptum, was also studied. Attachment was evaluated with fluorescence staining and FISH using four specific probes. L. ferrooxidans showed highest initial attachment in all cases. The presence of Ap. cryptum increased the cell attachment compared with the autotrophic pure cultures. It was possible to correlate experimental data with a mechanism of bacterial-metal sulfide oxidation, the polysulfide pathway for acid- soluble metal sulfides.



Advanced Materials Research (Volumes 71-73)

Edited by:

Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini




J. Huergo et al., "FISH Analysis of Bacterial Attachment to Copper Sulfides in Bioleaching Processes", Advanced Materials Research, Vols. 71-73, pp. 329-332, 2009

Online since:

May 2009




[1] T. Rohwerder, T. Gehrke, K. Kinzler and W. Sand: Appl. Microb. Biotech. Vol. 63 (2003), p.239.

[2] N.P. Marhual, N. Pradhan, R.N. Kar, L.B. Sukla and B.K. Mishra: Biores. Technol. Vol. 99 (2008), p.8331.

[3] B. Fub, H. Zhoua, R. Zhanga and G. Qiu: Int Biodet. Biodeg. Vol 62 (2008), p.109.

[4] M. Qiu, S. Xiong, W. Zhang and G. Wang: Miner. Eng. Vol 18 (2005), p.987.

[5] L. Falco, G. Pogliani, G. Curutchet and E. Donati: Hydrometallurgy Vol 71 (2003), p.31.

[6] A.P. Harrison. Int. J. Syst. Bacteriol. Vol 31 (1981), p.327.

[7] S. Bellemberg. Bachelor Thesis. Supervisors: W. Sand and H.C. Flemmimg. Biofilm Centre, Department of Aquatic Biotechnology. University Duisburg-Essen, Germany (2008).

[8] S. Mangold, K. Harneit, T. Rohwerder, G. Claus and W. Sand: Appl. Environ. Microbiol. Vol 72 (2008), p.410.

[9] J. Lei, Z. Huaiyang, P. Xiaotong and D. Zhonghao: Miner. Eng. Vol 22 (2009), p.37.

[10] M.P. Silverman and D.G. Lundgren: J. Bacteriol. Vol 77 (1959), p.642.

[11] M.E. Mackintosh: J. Gen. Microbiol. Vol 105 (1978), p.215.

[12] R.I. Amann, W. Ludwing and K. H. Schleifer: Microb. Rev. Vol 59 (1995), p.143.

[13] R. Sandaa, A. Enger, and V. Torsvik: Appl. Environ. Microbiol. Vol. 65 (1999), p.3293.

[14] E. González-Toril, F. Gómez, M. Malki and R. Amils, in: The Isolation and Study of Acidophilic Microorganisms edited by F.A. Rainey and A. Oren. Vol 35 in Methods in Microbiology, chapter, 20, Elsevier Science Publishers (2006).


[15] V. Gautier, B. Escobar and T. Vargas: Hydrometallurgy Vol 94 (2008), p.121.

[16] T. Rohwerder and W. Sand, in: Mechanisms and Biochemical Fundamentals of Bacterial Metal Sulfide Oxidation edited by E. R. Donati and W. Sand in Microbial Procesing of Metal Sulfides, Chapter, 2, Springer Publisher (2007).