Metal - Microbes Interactions: beyond Environmental Protection

Abstract:

Article Preview

Bioremediation can be applied for the treatment of metal/metalloid and radionuclide bearing water streams in order to immobilize the targeted species. Interactions of microbial cells with soluble targeted species may occur during the microbial metabolism and result to the reduction of their mobility and toxicity. The most important metabolically mediated immobilization processes for metal/metalloid and radionuclide species are bioprecipitation and bioreduction. Bioprecipitation includes the transformation of soluble species to insoluble hydroxides, carbonates, phosphates and sulfides as a result of the microbial metabolism. In the case of biological reduction, the cells use the species as terminal electron acceptors in anoxic environments to produce energy and/or reduce the toxicity of the cells microenvironment. These processes can be the basis of technologies for the rehabilitation of contaminated sites both for surface and groundwater aquifers, soils and industrial water streams. Such technologies are recently developed and applied both in pilot and full scale, although the related mechanisms are complicated and not always fully understood.

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Edited by:

Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini

Pages:

527-532

DOI:

10.4028/www.scientific.net/AMR.71-73.527

Citation:

M. Tsezos "Metal - Microbes Interactions: beyond Environmental Protection", Advanced Materials Research, Vols. 71-73, pp. 527-532, 2009

Online since:

May 2009

Authors:

Export:

Price:

$35.00

[1] L. Diels, M.D. Smet, L. Hooyberghs and P. Corbisier: Molecular Biotechnology Vol. 12 (1999), p.149.

[2] H. Ehrlich and C.L. Brierley: Microbial Mineral Recovery (Mc Graw Hill, 1990).

[3] M.G. Gadd and C. White: Trends in Biotechnology Vol. 11 (1993), p.353.

[4] G.M. Gadd: Geoderma Vol. 122 (2004), p.109.

[5] S.N. Groudev, I.I. Spasova and P.S. Georgiev: International Journal of Mineral Processing Vol. 62 (2001), p.301.

[6] V.M. Logan, K.F. Reardon, L.A. Figueroa, J.E.T. McLain and D.M. Ahmann: Water Research Vol. 39 (2005), p.4537.

[7] J.R. Lloyd and D.R. Lovley: Current Opinion in Biotechnology Vol. 12 (2001), p.248.

[8] M. Anushree: Environment International Vol. 30 (2004), p.261.

[9] B.E. Rittmann and P.L. McCarty: Environmental Biotechnology: Principles and applications (2001).

[10] G.M. Gadd: FEMS Microbiology Reviews Vol. 11 (1993), p.297.

[11] C. White, J.A. Sayer and G.M. Gadd: FEMS Microbiology Reviews Vol. 20 (1997), p.503.

[12] J.F. Banfield, S.A. Welch, H. Zhang, T. Thomsen-Ebert and R.L. Penn: Science Vol. 289 (2000), p.751.

[13] E. Remoudaki, A. Hatzikioseyian, P. Kousi and M. Tsezos: Water Research Vol. 37 (2003), p.3843.

DOI: 10.1016/s0043-1354(03)00306-3

[14] T. Pümpel, C. Ebner, B. Pernfuß, F. Schinner, L. Diels, Z. Keszthelyi, A. Stankovic, J.A. Finlay, L.E. Macaskie, M. Tsezos and H. Wouters: Hydrometallurgy Vol. 59 (2001), p.383.

DOI: 10.1016/s0304-386x(00)00168-7

[15] C. White and G.M. Gadd: Microbiology Vol. 144 (1998), p.1407.

[16] T. Jong and L.P. David: Water Research Vol. 37 (2003), p.3379.

[17] A.H. Kaksonen, M. -L. Riekkola-Vanhanen and J.A. Puhakka: Water Research Vol. 37 (2003), p.255.

[18] J.P. Maree and W.F. Strydom: Water Research Vol. 21 (1987), p.141.

[19] M.D. Tucker, L.L. Barton and B.M. Thomson: Journal of Industrial Microbiology and Biotechnology Vol. 20 (1998), p.13.

[20] L.E. Macaskie, K.M. Bonthrone and D.A. Rouch: FEMS Microbiology Letters Vol. 121 (1994), p.141.

[21] L.E. Macaskie and A.C.R. Dean: Enzyme and Microbial Technology Vol. 9 (1987), p.2.

[22] L.E. Macaskie, C.J. Hewitt, J.A. Shearer and C.A. Kent: International Biodeterioration & Biodegradation Vol. 35 (1995), p.73.

[23] M.J. Chen and O.J. Hao: Critical Reviews in Environmental Science and Technology Vol. 28 (1998), p.219.

[24] D.R. Lovley and E.J.P. Phillips: Appl. Environ. Microbiol. Vol. 60 (1994), p.726.

[25] J. McLean and T.J. Beveridge: Appl. Environ. Microbiol. Vol. 67 (2001), p.1076.

[26] A. Hatzikioseyian, E. Remoudaki, and M. Tsezos. Biosorption and biological reduction of chromium by microbial biomass in batch and pilot scale rotating biological contactor (RBC). in International Biohydrometallurgy Symposium IBS 2001. 2001: V.S.T. Ciminelli, O. Garcia Jr.

[27] J.F. Stolz and R.S. Oremland: FEMS Microbiol. Rev. Vol. 23 (1999), p.615.

[28] F. Tomei, L. Barton, C. Lemanski, T. Zocco, N. Fink and L. Sillerud: Journal of Industrial Microbiology Vol. 14 (1995), p.329.

[29] D.R. Lovley and E.J.P. Phillips: Appl. Environ. Microbiol. Vol. 58 (1992), p.850.

[30] J.L. Uhrie, J.I. Drever, P.J.S. Colberg and C.C. Nesbitt: Hydrometallurgy Vol. 43 (1996), p.231.

[31] D.R. Lovley, E.E. Roden, E.J.P. Phillips and J.C. Woodward: Marine Geology Vol. 113 (1993), p.41.

[32] M.D. Tucker, L.L. Barton and B.M. Thomson: Journal of Environmental Quality Vol. 26 (1997), p.1146.

[33] F. Glombitza: Waste Management Vol. 21 (2001), p.197.

[34] C. García, D.A. Moreno, A. Ballester, M.L. Blázquez and F. González: Minerals Engineering Vol. 14 (2001), p.997.

[35] S. Foucher, F. Battaglia-Brunet, I. Ignatiadis and D. Morin: Chemical Engineering Science Vol. 56 (2001), p.1639.

In order to see related information, you need to Login.