In Situ Bioremediation of Contaminated Soils in Uranium Deposits


Article Preview

Experimental plots consisting of acidic and alkaline soils heavily contaminated with radionuclides (mainly U and Ra) and non-ferrous metals (mainly Cu, Zn, Cd, Pb) were treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms and leach solutions used to irrigate the soils (mainly acidophilic chemolothotrophic bacteria and diluted sulphuric acid in the acidic soil, and various heterotrophs and bicarbonate and soluble organics in the alkaline soil). The dissolved contaminants were removed from the soil profile through the drainage soil effluents or were transferred to the deeply located soil subhorizon B2 where they were precipitated as the relevant insoluble forms (uranium as uraninite, and the non-ferrous metals as the relevant sulphides) as a result of the activity of the sulphate-reducing bacteria inhabiting this soil subhorizon.



Advanced Materials Research (Volumes 71-73)

Edited by:

Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini






S. N. Groudev et al., "In Situ Bioremediation of Contaminated Soils in Uranium Deposits", Advanced Materials Research, Vols. 71-73, pp. 533-540, 2009

Online since:

May 2009




In order to see related information, you need to Login.

In order to see related information, you need to Login.