In Situ Bioremediation of Contaminated Soils in Uranium Deposits

Abstract:

Article Preview

Experimental plots consisting of acidic and alkaline soils heavily contaminated with radionuclides (mainly U and Ra) and non-ferrous metals (mainly Cu, Zn, Cd, Pb) were treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms and leach solutions used to irrigate the soils (mainly acidophilic chemolothotrophic bacteria and diluted sulphuric acid in the acidic soil, and various heterotrophs and bicarbonate and soluble organics in the alkaline soil). The dissolved contaminants were removed from the soil profile through the drainage soil effluents or were transferred to the deeply located soil subhorizon B2 where they were precipitated as the relevant insoluble forms (uranium as uraninite, and the non-ferrous metals as the relevant sulphides) as a result of the activity of the sulphate-reducing bacteria inhabiting this soil subhorizon.

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Edited by:

Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini

Pages:

533-540

Citation:

S. N. Groudev et al., "In Situ Bioremediation of Contaminated Soils in Uranium Deposits", Advanced Materials Research, Vols. 71-73, pp. 533-540, 2009

Online since:

May 2009

Export:

Price:

$38.00

[1] A. S. Knox, M. H. Paller, D.D. Reible, X. Ma and I. G. Petrisor: Soil & Sediment Contamination Vol 17 (2008), p.516.

[2] J. L. Osiensky and R. E. Williams: Ground Wat. Mont. Rev. Vol 10 (1990), p.107.

[3] E.J.P. Phillips, E. R. Landa abd D.R. Lovley: J. Ind. Microbiol. Vol. 14 (1995), p.203.

[4] C.N. Mulligan, R. Yong and B. Gibbs: J. Hazard. Mater. Vol. 85 (2001), p.145.

[5] Y. Suzuki and T. Suko: J. Miner. Petrol. Sci. Vol 101 (2006), p.299.

[6] S.N. Groudev, I.I. Spasova, M.V. Nicolova and P.S. Georgiev; in: ConSoil 2005, Lecture Session D. 13, Bordeaux, 3 - 7 October 2005, http: /www. consoil. de.

[7] R.E. Hinchee, J.J. Means and D.R. Burris (Eds. ): Bioremediation of Inorganics (Battele Press, Columbus, Ohio 1995).

[8] U.S. Environmental Protection Agency: Description and Sampling of Contaminated Soils - A Field Pocket Guide (EPA/625/12 - 91/002 Technology Transfer, Centre for Environmental Research Information, USEPA, Cincinnati, Ohio 1991).

[9] A.A. Sobek, W.A. Schuller, J.R. Freemen and R.M. Smith: Field and Laboratory Methods Applicable to Overburden and Mine Soils, USEPA Report 600/2 - 78 - 054, Cincinnati, Ohio (1978).

[10] P.S. Georgiev and S.N. Groudev, in: 12th Conference on Environment and Mineral Processing (VŠB - Technical University of Ostrava, Czech Republic, 5 - 7 June 2008, Part I, p.47).

[11] S.N. Groudev, I.I. Spasova, M.V. Nicolova and P.S. Georgiev; in: Methods and Techniques for Clean-up Contaminated Sites, edited by M. Annable, M. Teodorescu, P. Hlavinek and L. Diels, NATO Science for Peace and Security Series - C: Environmental Security, p.25, Springer, Dordrecht (2008).

DOI: https://doi.org/10.1007/978-1-4020-6875-1

[12] G Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri and H. Nitsche: Radiochimica Acta Vol. 89 (2001), p.511.

[13] R.J. Finch and T. Murakami, in: Uranium: Mineralogy, Geochemistry and the Environment, edited by P.C. Burns and R.J. Finch, Reviews in Mineralogy, Mineralogical Society of America, Washington D.C., Vol 38 (1999), p.91.

[14] S.N. Groudev: Microbiological Transformations of Mineral Raw Materials, DSc Thesis, University of Mining and Geology, Sofia (1990).

[15] D.R. Lovley, E.J.P. Phillips, Y.A. Gorby and E.R. Landa: Nature Vol. 350 (1991), p.413.

[16] R.T. Anderson, H.A. Vrionis, I. Ortiz-Bernad, C.T. Resch, P.E. Long, R. Dayvault, K. Karp, S. Marutzky, D.R. Metzler, A. Peacock, D.C. White, M. Lowe and D.R. Lovley: Appl. Environ. Microbiol. Vol 69 (2003), p.5884.

DOI: https://doi.org/10.1128/aem.69.10.5884-5891.2003

[17] J.M. Senko, J.D. Istok, J.M. Sulfita and L.R. Krumholz: Environ. Sci. & Technology Vol. 26 (2002), p.1491.

[18] K.T. Finneran, M.E. Housewright and D.R. Lovley: Environ. Microbiol. Vol. 2 (2002), p.510.

[19] D.A. Elias, J.M. Senko and L.R. Krumholz: J. Microbiol. Methods Vol. 53 (2003), p.343.

[20] S.C. Brooks, J.K. Fredrickson, S.L. Carroll, D.W. Kennedy, J.M. Zachara, A.E. Plymale, S.D. Kelly, K.M. Kemner and S. Fendorf: Environ. Sci. & Technology Vol. 37 (2003), p.1850.

DOI: https://doi.org/10.1021/es0210042

[21] J.M. Wan, T.K. Tokunaga, E. Brodie, Z.M. Wang, Z.P. Zheng, D. Herman, T.C. Hazen, M.K. Firestone and S.R. Sutton: Environ. Sci. & Technology Vol. 39 (2005), p.6162.

[22] I. Ortiz-Bernad, R.T. Anderson, H.A. Vrionis and D.R. Lovley: Appl. Environ. Microbiol. Vol. 70 (2004), p.7558.

[23] H.A. Vrionis, R.T. Andeson, I. Ortiz-Bernad, K.R. O'Neill, C.T. Resch, A.D. Peacock, R. Dayvault, D.C. White, P.E. Long and D.R. Lovley: Appl. Environ. Microbiol. Vol. 71 (2005), p.6308.