Today’s Wastes, Tomorrow’s Materials for Environmental Protection


Article Preview

Over the past 30 years the literature has burgeoned with bioremediation approaches to heavy metal removal from wastes. The price of base and precious metals has dramatically increased. With the resurgence of nuclear energy uranium has become a strategic resource. Other ‘non-carbon energy’ technologies are driven by the need to reduce CO2 emissions. The ‘New Biohydrometallurgy’ we describe unites these drivers by the concept of conversion of wastes into new materials for environmental applications. The new materials, fashioned, bottom-up, into nanomaterials under biocontrol, can be termed ‘Functional Bionanomaterials’. This new discipline, encompassing waste treatment along with nanocatalysis or other applications, can be summarized as ‘Environmental Bionanotechnology’. Several case histories illustrate the scope and potential of this concept.



Advanced Materials Research (Volumes 71-73)

Edited by:

Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini




L. E. Macaskie et al., "Today’s Wastes, Tomorrow’s Materials for Environmental Protection", Advanced Materials Research, Vols. 71-73, pp. 541-548, 2009

Online since:

May 2009




[1] V.S. Coker, G. van der Laan, R.A.D. Pattrick, and J.R. Lloyd, in: �ovel nanomagnets manufactured by friendly bacteria. SRD Annual Report, p.47 (2005-6).

[2] M.T. Jackson, J. Sampson and H.M. Prichard: Sci. Total Environ. Vol. 385 (2007), p.117.

[3] Anon. Platinum Metals Rev. Vol. 53 (2009), p.48 Fig. 5. (A) Conversion of Fe(III)-oxyhydroxide (orange vial) to nanoscale magnetite (black vial) using G. sulfurreducens (B) TEM image of nano-scale biogenic magnetite particles. A B.

[4] A.J. Brierley, G.M. Goyak and C.L. Brierley, in: Immobilisation of ions by bio-sorption, edited by H. Eccles and S. Hunt. Ellis Horwood publisher, Chichester, England (1986).

[5] J.R. Lloyd, R.T. Anderson and L.E. Macaskie in Bioremediation edited by R. Atlas and J. Philp ASM Press, Washington DC (2005) p.293.

[6] J.R. Lloyd, C.I. Pearce, V.S. Coker, R.A.D. Pattrick, G. Van der Laan, R. Cutting, D.J. Vaughan, M. Paterson-Beedle, I.P. Mikheenko, P. Yong and L.E. Macaskie: Geobiology Vol. 6 (2008), p.285.


[7] L.E. Macaskie, K.M. Bonthrone, P. Yong, D.T. Goddard: Microbiology Vol. 146 (2000), p.1855.

[8] L.E. Macaskie, P. Yong, T.C. Doyle, M.G. Roig, M. Diaz, T. Manzano: Biotech. Bioeng. Vol. 53 (1997), p.100.

[9] K.M. Bonthrone, G. Basnakova F. Lin and L.E. Macaskie: Nature Biotechnology Vol. 14 (1996), p.635.

[10] M. Paterson-Beedle, L.E. Macaskie, C.H. Lee, J.A. Hriljac, K.Y. Jee and W.H. Kim: Hydrometallurgy Vol. 83 (2006), p.141.

[11] EU Final report: Biological Rehabilitation of Metal Bearing Wastewaters, EV5V-CT93-0251 (1995).

[12] M. Paterson-Beedle, L.E. Macaskie, J.E. Readman and J.A. Hriljac. In: This volume IBS (2009).

[13] J.R. Lloyd, P. Yong and L.E. Macaskie: Appl. Environ. Microbiol. Vol. 64 (1998), p.4607.

[14] P. Yong, N.A. Rowson, J.P. Farr, I.R. Harris and L.E. Macaskie: Environ. Technol. Vol. 24 (2003), p.289.

[15] N.J. Creamer, V.S. Baxter-Plant, J. Henderson, M. Potter and L.E. Macaskie: Biotechnol. Lett. Vol 28 (2006), p.1475.

[16] A.N. Mabbett, P. Yong, J.P.G. Farr and L.E. Macaskie: Biotechnol. Bioeng. Vol. 87 (2004), p.104.

[17] V.S. Baxter-Plant, I.P. Mikheenko and L.E. Macaskie: Biodegradation Vol. 14 (2003), p.83.

[18] B. Mertens, C. Blothe, K. Windey, W. de Windt, and W. Verstraete: Chemosphere Vol. 66 (2007), p.99.


[19] K. Deplanche, T.J. Snape, S. Hazrati, S. Harrad and L.E. Macaskie: Environ. Technol. (2009), in press.

[20] N. Korte, L. Lang, R. Muftikan, C. Grittini, and Q. Fernando: Plat. Metals. Rev. Vol 41 (1997), p.2.

[21] A.N. Mabbett, D. Sanyahumbi, P. Yong and L.E. Macaskie: Environ. Sci. Technol. Vol. 40 (2006), p.1015.

[22] A.J. Murray, I.P. Mikheenko, E. Goralska, N.A. Rowson and L.E. Macaskie: Advanced Materials Res. Vols. 20-21 (2007) p.651.

[23] S. Dimitriadis, N. Nomikou, and A.P. McHale: Biotechnol. Lett. Vol. 29 (2007), p.545.

[24] P. Yong, M. Paterson-Beedle, I.P. Mikheenko and L.E. Macaskie: Biotechnol. Lett. Vol. 29 (2007), p.539.

[25] P. Yong, I.P. Mikheenko, K. Deplanche, F. Sargent and L.E. Macaskie Biorecovery of Precious Metals from Wastes and Conversion into Fuel Cell Catalyst for Electricity Production. IBS2009 Argentina.


[26] K. Deplanche and L.E. Macaskie: Biotechnol. Bioeng. Vol. 99 (2008), p.1055.

[27] K. Deplanche, G. Attard and L.E. Macaskie Adv. Mats. Res. Vol 20-21 (2007) p.647.

[28] M. Rousset, L. Casalot, P. De Philip, A. Belaich, I. Mikheenko and L.E. Macaskie. International patent PCT/EP200/050942 (2007).

[29] M. D Redwood, K. Deplanche, V.S. Baxter-Plant and L.E. Macaskie: Biotechnol. Bioeng. Vol. 99 (2008), p.1045.

[30] A.D. Lemly: Ecotoxicol. Environ. Safety Vol. 59 (2004), p.44.

[31] A. Shrift: Nature, Vol. 201 (1964), p.1304.

[32] D.C. Miller, T.J. Webster, in: Cancer Nanotechnology, edited by Nalwa HS, Webster TJ, American Scientific Publishers, pp.307-316 (2006).

[33] C.I. Pearce, V.S. Coker, J.M. Charnock, R.A.D. Pattrick, J.F.W. Mosselmans, N. Law, T.B. Beveridge, J.R. Lloyd: Nanotechnol. Vol. 19 (2008), p.1.

[34] N. Ralston: Nat. Nanotechnol. Vol. 3 (2008), p.527.

[35] R.S. Oremland, H.J. Mitchell, J.S. Blum, S. Langley, T.J. Beveridge, P.M. Ajayan, T. Sutto, A.V. Ellis and S Curran: Appl. Environment. Microbiol. Vol. 70 (2004), p.52.

[36] F. Caccavo Jr, D.J. Lonergan, D.R. Lovley, M. Davis, J.F. Stolz, and M.J. McInerney: Appl. Environ. Microb. Vol. 60 (1994), p.3752.

[37] V.S. Coker, C.I. Pearce, C. Lang, G. van der Laan, R.A.D. Pattrick, N.D. Telling, D. Schuler, E. Arenholz, and J.R. Lloyd: Eur. J. Mineral. Vol. 19 (2007), p.707.


[39] V.S. Coker, C.I. Pearce, R.A.D. Pattrick, G. van der Laan, N.D. Telling, J.M. Charnock, E. Arenholz, and J.R. Lloyd: American Mineralogist Vol. 93 (2008), p.1119.