Properties of High-Quality LaAlO3 Film Deposited by In Situ Plasma-Enhanced-Atomic-Layer-Deposition


Article Preview

Plasma enhanced atomic layer deposition (PEALD) method can decrease film growing temperature, and allow in-situ plasma treatment. LaAlO3 films were deposited with PEALD at 180°C. High resolution transmission electron microscopy (HRTEM) results exhibited amorphous microstructure of both films even after rapid thermal annealing (RTA) at 800°C. X-ray photoelectron spectroscopy (XPS) spectra suggested that the valence-band offset between the LaAlO3 film and the substrate was 3.3 eV. The electrical experimental results indicated that the leakage current densities were 0.10mA/cm2 and 0.03mA/cm2 respectively at a gate bias of |Vg-Vfb|=1V and the equivalent oxide thicknesses (EOT) of them were 1.2 nm and 1.4 nm, respectively. The densities of interfacial states were calculated to be 1.70×1012eV-1cm-2 and 1.09×1012eV-1cm-2, respectively.



Edited by:

Qingzhou Xu






D. Cao et al., "Properties of High-Quality LaAlO3 Film Deposited by In Situ Plasma-Enhanced-Atomic-Layer-Deposition", Advanced Materials Research, Vol. 721, pp. 24-28, 2013

Online since:

July 2013




[1] M. L. Green, E. P. Gusev, R. Degraeve and E. L. Garfunkel, Journal of Applied Physics 90 (5), 2057-2121 (2001).

[2] G. D. Wilk, R. M. Wallace and J. M. Anthony, Journal of Applied Physics 87 (1), 484-492 (2000).

[3] Y. -S. Lin, R. Puthenkovilakam and J. P. Chang, Applied Physics Letters 81 (11), 2041-2043 (2002).

[4] Y. H. Wu, M. Y. Yang, Albert Chin, Senior Member, IEEE, 21(7), July (2000).

[5] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell. Appl. Phys. Lett. 92, 071901, (2008).

[6] Dawei Xu, Xinhong Cheng, Microelectronic Engineering, 93, 15-18, (2012).

[7] P. Tsipas, S. N. Volkos, A. Sotiropoulos, S. F. Galata, Applied physics letters 93(082904)(2008).

[8] A. M Veneziaa, L. F Liottaa, G Pantaleoa, Applied Catalysis A 251, Issue 2, 30 (2003).

[9] Wang Jianqi, Wu Wenhui, Feng Damin.Introduction to Electron Spectrophy[M].Beijing: National Defense Press,(1992).

[10] Schlaphac L.Solid State Communications [J] ,1981 38: 117.

[11] E. Kraut, R. Grant, J. Waldrop, and K. Kowalczyk, Phys. Rev. B 28, 1965(1983).

[12] L. F. Edge and D. G. Schlom. Applied Physics Letters, 84, (5) 726–728, (2004).

[13] K.J. Yang, C. Hu, IEEE Trans. Electron. Devices, 46, 1500 (1999).

[14] M.J. Uren, J.H. Stathis, and E. Cartier, J. Appl. Phys. 80, 3915(1996).

[15] R.J. Carter, E. Cartier, A. Kerber, L. Pantisano, Appl. Phys. Lett. Vol. 83, (2003).

[16] E.H. NICOLLIAN, J.R. BREWS. MOS physics and technology. 213-217, (1982).

In order to see related information, you need to Login.