Ab Initio Calculations of a Refractory Ceramic (β-Ge3N4): A Computer Simulation

Abstract:

Article Preview

Ab initio electronic structures for β-Ge3N4 are investigated using ultrasoft pseudo-potential method within the generalized gradient approximation functional. The lattice parameters are predicted theoretically, and are compared with available experimental data and the other theoretical results. The elastic constants calculations reveal that the phenacite structure is a stable phase in the pressure range of 020GPa. The high bulk modulus (B=180.2GPa) indicates that β-Ge3N4 is a relatively hard material. β-Ge3N4 has a direct band gap of 2.94eV, indicating its promising applications as a semiconductor in electronics and optical fibers. On the other hand, the density of states analysis is also included in this paper.* Corresponding author: CHEN Dong

Info:

Periodical:

Edited by:

Helen Zhang, David Jin and X.J. Zhao

Pages:

18-21

Citation:

C. Xu and D. Chen, "Ab Initio Calculations of a Refractory Ceramic (β-Ge3N4): A Computer Simulation", Advanced Materials Research, Vol. 738, pp. 18-21, 2013

Online since:

August 2013

Authors:

Export:

Price:

$38.00

[1] J.J. Dong, O.F. Sankey, S.K. Deb, G. Wolf and P.F. McMillan: Phys. Rev. B Vol. 61 (2000), p.11979.

[2] S.K. Deb, J. Dong, H. Hubert, P.F. McMillan and O.F. Sankey: Solid State Commun. Vol. 114 (2000), p.137.

[3] Y.C. Ding, A.P. Xiang, X.H. Zhu, J. Luo and X.F. Hu: Int. J. Modern Phys. B Vol. 26 (2012), p.1250200.

[4] K. Kato, H. Kondo, M. Sakashita and S. Zaima: Thin Solid Films Vol. 518 (2010), p. S226.

[5] Y.H. Duan, K.M. Zhang and X.D. Xie: Acta Phys. Sin. Vol. 45 (1996), p.512.

[6] B. Molina and L.E. Sansores: Int. J. Quant. Chem. Vol. 80 (2000), p.249.

[7] J.E. Lowther: Phys. Rev. B Vol. 62 (2000), p.5.

[8] S.P. Gao, G.H. Cai and Y. Xu: Comput. Mater. Sci. Vol. 67 (2013), p.292.

[9] W. Wong-Ng, H. McMurdie, B. Paretzkin, C. Hubbard and A. Dargoo: Powder Diffrac. Vol. 3 (1987), p.50.

[10] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

[11] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

[12] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

[13] J. Robertson: Philos. Mag. B Vol. 69 (1994), p.307.

[14] S.N. Ruddlesden and P. Popper: Acta Cryst. Vol. 11 (1958), p.465.

[15] A.J. Wang, S.L. Shang, Y. Du, Y. Kong, L.J. Zhang, L. Chen, D.D. Zhao and Z.K. Liu: Comput. Mater. Sci. Vol. 48 (2010), p.705.

[16] A.Y. Liu and M.L. Cohen: Science Vol. 245 (1989), p.841.

[17] C. Sevik and C. Bulutay: J. Mater. Sci. Vol. 42 (2007), p.6555.

[18] J. W. Oh, C. Y. Kim, K. S. Nahm and K. S. Sim: J. Alloys Compd. Vol. 278 (1998), p.270.

[19] W.Y. Ching, S.D. Mo and L.Z. Ouyang: Phys. Rev. B Vol. 63 (2001), p.245110.

Fetching data from Crossref.
This may take some time to load.