Recent Advances in Computational Methods for Microsystems

Abstract:

Article Preview

An algorithm, which combines the use of Domain Decomposition and Model Order Reduction methods based on Proper Orthogonal Decomposition, is proposed. The algorithm allows for the efficient handling of electro-mechanical coupled problems in MEMS, with a strong reduction of computing time with respect to standard monolithic or staggered solution strategies. Examples of coupled electro-mechanical problems, concerning a vibrating beam subject to variable electrostatic forces, are presented and discussed.

Info:

Periodical:

Edited by:

Erasmo Carrera, Maria Cinefra, Federico Miglioretti and Marco Petrolo

Pages:

13-25

DOI:

10.4028/www.scientific.net/AMR.745.13

Citation:

A. Corigliano et al., "Recent Advances in Computational Methods for Microsystems", Advanced Materials Research, Vol. 745, pp. 13-25, 2013

Online since:

August 2013

Export:

Price:

$35.00

[1] J.G. KORVINK, O. PAUL EDS. MEMS: A PRACTICAL GUIDE TO DESIGN, ANALYSIS, AND APPLICATIONS. WILLIAM ANDREW INC. AND SPRINGER-VERLAG, (2006).

[2] S. Selleri, O. Farle, G. Guarnieri, M. Losch, G. Pelosi, R. Dyczij-Edlinger, A combined domain decomposition - model order reduction technique for fast finite element parametric sweeps, Antennas and Propagation Society International Symposium, IEEE, 5-11 July 2008, San Diego, USA.

DOI: 10.1109/aps.2008.4619422

[3] D. CINQUEGRANA, R.S. DONELLI, A. VIVIANI, A HYBRID METHOD BASED ON POD AND DOMAIN DECOMPOSITION TO COMPUTE THE 2-D AERODYNAMICS FLOW FIELD, AIMETA 2011, LAMC – UNIVERSITÀ DI BOLOGNA, ITALY.

[4] P. Kerfriden, O. Goury, T. Rabczuk, S.P.A. Bordas, A partitioned model order reduction approach to rationalize computational expenses in nonlinear fracture mechanics, Computer Methods in Applied Mechanics and Engineering, 256 (2013) 169-188.

DOI: 10.1016/j.cma.2012.12.004

[5] A. Chatterjee, An Introduction to the proper orthogonal decomposition, Current Science, 78 (2000) 808-817.

[6] G. Kerschen, J.C. Golinval, A. Vakaris, L.A. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical system: an overview, Nonlinear Dynamics, 41 (2005) 147-169.

DOI: 10.1007/s11071-005-2803-2

[7] V. Rochus, D. Rixen, J.C. Golinval, Monolithic modelling of electro-mechanical coupling in microstructures, International Journal for Numerical Methods in Engineering, 65 (2006) 461–493.

DOI: 10.1002/nme.1450

[8] R. Ardito, L. Baldasarre, A. Corigliano, On the numerical evaluation of capacitance and electrostatic forces in MEMS, Proceedings of the 10th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems. EuroSimE 2009. Delft, Netherlands, 26-29 April (2009).

DOI: 10.1109/esime.2009.4938495

[9] S.D.A. Hannot, Modeling strategies for electro-mechanical Microsystems with uncertainty quantification, Ph.D. Thesis, TU Delft (2010).

[10] A. Combescure, A. Gravouil, Multi-time-step explicit-implicit method for non-linear structural dynamics, International Journal for Numerical Methods in Engineering, 50 (2001) 199-225.

DOI: 10.1002/1097-0207(20010110)50:1<199::aid-nme132>3.0.co;2-a

[11] N. Mahjoubi, A. Gravouil, A. Combescure, Coupling subdomains with heterogeneous time integrations and incompatible time steps, Computational Mechanics, 44 (2009) 825-843.

DOI: 10.1007/s00466-009-0413-4

[12] A. Corigliano, F. Confalonieri, M. Dossi, M. Gornati, A domain decomposition technique applied to the solution of the coupled electro-mechanical problem, International Journal for Numerical Methods in Engineering, 93 (2013) 137–159.

DOI: 10.1002/nme.4375

[13] A. Corigliano, M. Dossi, S. Mariani, Domain decomposition and model order reduction methods applied to the simulation of multi-physics problems in MEMS, Computers and Structures, http: /dx. doi. org/10. 1016/j. compstruc. 2012. 12. 012, in press (2013).

DOI: 10.1016/j.compstruc.2012.12.012

[14] S. Eftekhar Azam, S. Mariani, Investigation of computational and accuracy issues in POD-based reduced order modeling of dynamic structural systems, Engineering Structures, in press (2013).

DOI: 10.1016/j.engstruct.2013.04.004

[15] G. Kerschen, J.C. Golinval, A. Vakaris, L.A. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical system: an overview, Nonlinear Dynamics, 41 (2005) 147-169.

DOI: 10.1007/s11071-005-2803-2

[16] B.F. Feeny, R. Kappagantu, On the physical interpretation of the proper orthogonal modes in vibrations, Journal of Sound and Vibration, 211 (1998) 607-616.

DOI: 10.1006/jsvi.1997.1386

[17] M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra and its Applications, 415 (2006) 20-30.

DOI: 10.1016/j.laa.2005.07.021

[18] M. Brand, Incremental Singular Value Decomposition of Uncertain Data with Missing Value, Lecture Notes in Computer Science, 2350 (2002) 707–720.

DOI: 10.1007/3-540-47969-4_47

In order to see related information, you need to Login.