Bulk Nanocrystalline Al 7050 Prepared via Cryomilling


Article Preview

The operation with a combination of three processing routes: cryomilling, hot isostatic pressing (HIPping) and hot extrusion was adopted in the present study for preparation of the bulk nanocrystalline Al 7050. The microstructure and fractography of the bulk material were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Furthermore, the chemical composition, density and tensile properties of the material were also measured. Microstructural investigation showed that the grain size of the bulk nanocrystalline Al 7050 ranged from 100nm to 200nm. Numerous dispersoids with a diameter/length of ~50nm were observed on grain boundaries and inside the grains. Besides, one phase of these dispersoids existed in the bulk nanocrystalline Al 7050 was identified as Al6(FeMn). These dispersoids dispersed within the bulk nanocrystalline Al 7050, to some extent, increased the mechanical properties and thermal stability of the material. The resulted sample exhibited ultimate strength of 412MPa with an elongation of 5.2% when tested under tensile load, which was a bit lower than that of the traditionally wrought Al 7050-T6. The present results suggested that improper selected starting powder and milling parameters resulted in the flake-like morphology of the cryomilled powder. The flake-like morphology made it difficult for the cryomilled powder to fill the can entirely and achieve a high density material, which led to the weak interface within the bulk material and in turn degraded the mechanical properties of the bulk nanocrystalline Al 7050 prepared in the present work.



Advanced Materials Research (Volumes 779-780)

Edited by:

Jimmy (C.M.) Kao, Wen-Pei Sung and Ran Chen




J. L. Li et al., "Bulk Nanocrystalline Al 7050 Prepared via Cryomilling", Advanced Materials Research, Vols. 779-780, pp. 34-42, 2013

Online since:

September 2013




[1] T. T. Sasaki, T. Mukai, K. Hono. A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 57(2007)189-192.

DOI: https://doi.org/10.1016/j.scriptamat.2007.04.010

[2] H. Gleiter. Nanostructured material: basic concepts and microstructure. Acta Mater. 48(2000)1-29.

[3] C. C. Koch. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. 49(2003)657-662.

[4] D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. J. Lavernia. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr. Mater. 49(2003)297-302.

DOI: https://doi.org/10.1016/s1359-6462(03)00283-5

[5] E. J. Lavernia, B. Q. Han, J. M. Schoenung. Cryomilling nanostructured materials: Processing and Properties. Mater Sci Eng A. 493(2008)207-214.

[6] C. Suryanarayana. Mechanical alloying and milling. Progr. Mater. Sci. 46(2001)1-184.

[7] V. L. Tellkamp, A. Melmed, E. J. Lavernia. Mechanical behavior and microstructure of a thermally stable bulk nanostructure Al alloy. Metall Mater Trans A. 32(2001)2335-2343.

DOI: https://doi.org/10.1007/s11661-001-0207-6

[8] H. B. Chen, K. Tao, B. Yang, J. S. Zhang. Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering. Trans. Nonferrous Met. Soc. China. 19(2009)1110-1115.

DOI: https://doi.org/10.1016/s1003-6326(08)60415-x

[9] C. C. Bampton, J. R. Wooten, U.S. Patent 7, 435, 306B2. (2008).

[10] L. G. Fritzeneier, D. E. Matejczky, T. J. V. Daam, U. S. Patent 7, 354, 490B2. (2008).

[11] H. G. Jiang, H. M. Hu, E. J. Lavernia. Synthesis of Fe-rich Fe–Al nanocrystalline solid solutions using ball milling. J. Mater. Res. 14 ( 1999)1760-1770.

DOI: https://doi.org/10.1557/jmr.1999.0238

[12] J. H. He, E. J. Lavernia. Development of nanocrystalline structure during cryomilling of Inconel 625. J. Mater. Res. 16(2001)2724-2732.

DOI: https://doi.org/10.1557/jmr.2001.0372

[13] B. Q. Han, Z. Lee, D. Witkin, S. Nutt, E. J. Lavernia. Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall Mater Trans A. 36(2005)957-965.

DOI: https://doi.org/10.1007/s11661-005-0289-7

[14] Z. Lee, R. Rodriguez, R. W. Hayes, E. J. Lavernia, S. R. Nutt. Microstructural evolution and deformation of cryomilled nanocrystalline Al-Ti-Cu Alloy. Metall. Mater. Trans. A. 34(2003)1473-1481.

DOI: https://doi.org/10.1007/s11661-003-0259-x

[15] R. Vogt. Ph.D. California: University of California, Davis, (2010).

[16] ASTM B328-96. Standard Test Method for Density, Oil content, and Interconnected Porosity of Sintered Metal Structural Parts and Oil-Impregnated Bearing.

DOI: https://doi.org/10.1520/b0328

[17] C. C. Koch. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. NanoStruct. Mater. 9(1997)13-22.

[18] Y. Li, W. Liu, V. Ortalan, W. F. Li, Z. Zhang, R. Vogt, N. D. Browning, E. J. Lavernia, J. M. Schoenung. HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling. Acta Mater. 58(2010)1732-1740.

DOI: https://doi.org/10.1016/j.actamat.2009.11.015

[19] J. C. Ye, J. H. HE, J. M. Schoenung. Cryomilling for the fabrication of a particulate B4C reinforced Al nanocomposite: PartⅠ. Effects of process conditions on structure. Metall. Mater. Trans. A. 37(2006)3099-3109.

DOI: https://doi.org/10.1007/s11661-006-0190-z

[20] B. Q. Han, Z. Lee, S. R. Nutt, E. J. Lavernia, F. A. Mohamed. Mechanical properties of an ultrafine-grained Al-7. 5 pct Mg alloy. Metall Mater Trans A. 34(2003)603-613.

DOI: https://doi.org/10.1007/s11661-003-0095-z

[21] Y. Li, Y. H. Zhao, V. Ortalan, U. Liu, Z. H. Zhang, R. G. Vogt, N.D. Browning, E. J. Lavernia, J. M. Schoenung. Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng A. 527(2009)305-316.

DOI: https://doi.org/10.1016/j.msea.2009.07.067

[22] G. Lucadamo, N. Y. C. Yang, C. San Marchi, E. J. Lavernia. Microstructure characterization in cryomilled Al 5083. Mater. Sci. Eng. A. 430(2006)230-241.

DOI: https://doi.org/10.1016/j.msea.2006.05.039

[23] L. Wang, N. Beck, R. J. Arsenault. Strengthening of discontinuous reinforced NiAl composites. Mater. Sci. Eng. A. 177(1994)83-88.

[24] F. Tang, M. Hagiwara, J. M. Schoenung. Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling. Mater. Sci. Eng. A. 407(2005)306-314.

DOI: https://doi.org/10.1016/j.msea.2005.07.056

[25] J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, W. L. Johnson. Melting behavior of nanocrystalline aluminum powders. Nanostruct. Mater. 3(1993)517.

[26] J. C. Sánchez-LÓpez, A. Fernández, C. F. Conde, A. Conde, C. Morant, J. M. Sanz. The melting behavior of passivated nanocrystalline aluminum. Nanostruct. Mater. 7(1996)813-822.

DOI: https://doi.org/10.1016/s0965-9773(96)00053-0

[27] J. R. Davis. ASM Specialty Handbook : Aluminum and Aluminum Alloys, ASM, Metals Park, OH, (1994).

[28] F. Zhou, J. Lee, E. J. Lavernia. Grain growth kinetics of a mechanically milled nanocrystalline Al. Scr. Mater. 44(2001)2013-(2017).

DOI: https://doi.org/10.1016/s1359-6462(01)00826-0

[29] D. Wang, Z. Y. Ma, Z. M. Gao. Effect of severe cold rolling on tensile properties and stress corrosion cracking of 7050 aluminum alloy. Mater. Chem. Phys. 117(2009)228-233.

DOI: https://doi.org/10.1016/j.matchemphys.2009.05.048

[30] R. Vintila, A. Charest, R. A. Drew, M. Brochu. Systhesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite. Mater. Sci. Eng. A. 528(2011) 4395-4407.

DOI: https://doi.org/10.1016/j.msea.2011.02.079

[31] AMS2772E. Heat Treatment of Aluminum Alloy Raw Materials.

[32] Edit committee. China Aeronautical Materials Handbook, second ed. (Vol. 3). Beijing, (2001).