Calculation of Flexural Capacity of Steel Reinforced Concrete Beams Strengthened with FRP

Abstract:

Article Preview

Based on earlier theoretical works on RC beams ,the mechanical properties of steel reinforced concrete beams strengthened with FRP(fiber reinforce polymer) are further investigated theoretically including theirs failure mechanism and loadability. According to the design method of reinforced concrete beam strengthened with FRP, steel reinforced concrete beam strengthened with FRP mainly can have three kinds of destruction patterns: the first case is the tensile steel yield, the tensile shaped steel yield, the FRP are put off, the compressive zone’s concrete has not crushed; the second case is the tensile steel yield, the tensile shaped steel yield, the FRP are put off; the compressive zone’s concrete has crushed; the last case is the tensile steel yield, the tensile shaped steel yield, the FRP are not put off, the compressive zone’s concrete has crushed. The second case is discussed in this paper.Based on the different position of middle axle and steel, steel concrete beams strengthened with FRP include: middle axle through the steel web, and not through the steel and just in steel compression flange . Aim at these three kind of situations, the stress are analysed. According to the stress patterns of steel reinforced concrete beams strengthened with FRP and different position between neutral axis and steel, the discriminant formula of the boundary destroys and the formula of cross-section flexural capacity calculation are put forward by using limit equilibrium theory.The formula is expressed clearly, simple and easy to use.The depth of compressive region is given in view of different failure types.

Info:

Periodical:

Advanced Materials Research (Volumes 79-82)

Edited by:

Yansheng Yin and Xin Wang

Pages:

1141-1144

DOI:

10.4028/www.scientific.net/AMR.79-82.1141

Citation:

J. F. Liang et al., "Calculation of Flexural Capacity of Steel Reinforced Concrete Beams Strengthened with FRP", Advanced Materials Research, Vols. 79-82, pp. 1141-1144, 2009

Online since:

August 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.