A Study of Surface Integrity when Machining Refractory Titanium Alloys

Abstract:

Article Preview

In this paper, the surface integrity is studied when machining the aeronautical titanium alloys. Surface roughness, lay, defects, microhardness and microstructure alterations are studied. The result of surface roughness judges that the CVD-coated carbide fails to produce better Ra value than the uncoated. Lay is characterized by cutting speed and feed speed directions. Feed mark, tearing surface, chip layer formation as built up layer (BUL), and deposited microchip are the defects. Microhardness is altered down to 350 microns beneath the machined surface. The first 50 microns is the soft sub-surface caused by thermal softening in ageing process. Microstructure alteration is observed in this sub-surface. Down to 200 microns is the hard sub-surface caused by the cyclic internal work hardening and then it is gradually decreasing to the bulk material hardness. It is concluded that dry machining titanium alloy is possible using uncoated carbide with cutting condition limited to finish or semi-finish for minimizing surface integrity alteration.

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Edited by:

M. S. J. Hashmi, B. S. Yilbas and S. Naher

Pages:

1059-1068

Citation:

A. Ginting et al., "A Study of Surface Integrity when Machining Refractory Titanium Alloys", Advanced Materials Research, Vols. 83-86, pp. 1059-1068, 2010

Online since:

December 2009

Export:

Price:

$38.00

[1] Nouari, M., List, G., Girot, F., Gehin, D., Effect of machining parameters and coating on wear mechanism in dry drilling of aluminium alloys, Int. J. of Machine Tools and Manufacture, 45/12-13 (2005), pp.1436-1442.

DOI: https://doi.org/10.1016/j.ijmachtools.2005.01.026

[2] Nouari, M., List, G., Girot, F., Coupard, D., Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys, Wear, 255/7-12 (2003), pp.1359-1368.

DOI: https://doi.org/10.1016/s0043-1648(03)00105-4

[3] Ginting A., Nouari, M., Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material, Int. J. of Machine Tools and Manufacture, Vol. 46/7-8 (2006), pp.758-768.

DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.035

[4] Nouari, M., Ginting, A., Wear characteristics and performance of multi-layer CVD-coated carbide tool in dry milling of titanium alloy, Surface and Coatings Technology, Vol. 200/18-19 (2006), pp.5663-5676.

DOI: https://doi.org/10.1016/j.surfcoat.2005.07.063

[5] Nouari, M., Ginting, A., Study on machinability characteristic of aeronautical material under dry cutting environment, submitted to Materials and Design Journal (2007).

[6] Field, W., Kahles, J., Review of surface integrity of machined components, Annals of the CIRP, Vol. 20 (1971), pp.153-163.

[7] Che Haron, C.H., Tool life and surface integrity in turning titanium alloy, J. Mat. Proc. Technol., Vol. 118 (2001), pp.231-237.

DOI: https://doi.org/10.1016/s0924-0136(01)00926-8

[8] Che Haron, C.H., Jawaid, A., The effect of machining on surface integrity of titanium alloy Ti6%Al-4%V, J. Mat. Proc. Technol., Vol. 166 (2005), pp.188-192.

DOI: https://doi.org/10.1016/j.jmatprotec.2004.08.012

[9] Sharma, A.R.C., Aspinwall, D.K., Dewes, R.C., Bowen, P., Workpiece surface integrity considerations when finish turning gamma titanium aluminide, Wear, Vol. 249 (2001), p.473481.

DOI: https://doi.org/10.1016/s0043-1648(01)00575-0

[10] Sharma, A.R.C., Aspinwall, D.K., Dewes, R.C., Clifton, D., Bowen, P., The effect of machined workpiece integrity on the fatique life of -titanium aluminide, in Short Communication, Int. J. Mach. Tools & Manuf., Vol. 41 (2001), pp.1681-1685.

DOI: https://doi.org/10.1016/s0890-6955(01)00034-7

[11] Axinte, D.A., Kritmanorot, M., Axinte, M., Gindy, N.N.Z., Investigations on belt polishing of heat-resistant titanium alloy; J. Mat. Proc. Technol., Vol. 166, (2005), pp.398-404.

DOI: https://doi.org/10.1016/j.jmatprotec.2004.08.030

[12] Boyer, R.R., Titanium for aerospace: rationale and applications, Adv. Perform. Mat., (1995), pp.349-368.

[13] Brewer, W.D., Bird, R.K., Terryl, A.W., Titanium alloys and processing for high speed aircraft, Mat. Sci. and Engg., Vol. A243 (1998), pp.299-304.

[14] ASTM E384-89, 1990, Standard test method for microhardness of materials.

[15] ASTM E140-88, 1989, Standard hardness conversion tables for metals.

[16] ASTM E407-70, 1989, Standard test method for microetching metals and alloys.

[17] Prengel, H.G., Pfouts, W.R., Santhanam, A.T., State of the art in hard coatings for carbide cutting tools, Surface and Coatings Technology, Vol. 102 (1998), pp.177-183.

DOI: https://doi.org/10.1016/s0257-8972(96)03061-7

[18] Lapin, J., Pelachhová, T., Microstructure stability of a cast Ti-45. 2Al-2V-0. 6Si-0. 7B alloy at temperatures 973-1073 K, Intermetallics, Vol. 14 (2006), pp.1175-1180.

DOI: https://doi.org/10.1016/j.intermet.2005.12.013