[1]
Nouari, M., List, G., Girot, F., Gehin, D., Effect of machining parameters and coating on wear mechanism in dry drilling of aluminium alloys, Int. J. of Machine Tools and Manufacture, 45/12-13 (2005), pp.1436-1442.
DOI: https://doi.org/10.1016/j.ijmachtools.2005.01.026
[2]
Nouari, M., List, G., Girot, F., Coupard, D., Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys, Wear, 255/7-12 (2003), pp.1359-1368.
DOI: https://doi.org/10.1016/s0043-1648(03)00105-4
[3]
Ginting A., Nouari, M., Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material, Int. J. of Machine Tools and Manufacture, Vol. 46/7-8 (2006), pp.758-768.
DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.035
[4]
Nouari, M., Ginting, A., Wear characteristics and performance of multi-layer CVD-coated carbide tool in dry milling of titanium alloy, Surface and Coatings Technology, Vol. 200/18-19 (2006), pp.5663-5676.
DOI: https://doi.org/10.1016/j.surfcoat.2005.07.063
[5]
Nouari, M., Ginting, A., Study on machinability characteristic of aeronautical material under dry cutting environment, submitted to Materials and Design Journal (2007).
[6]
Field, W., Kahles, J., Review of surface integrity of machined components, Annals of the CIRP, Vol. 20 (1971), pp.153-163.
[7]
Che Haron, C.H., Tool life and surface integrity in turning titanium alloy, J. Mat. Proc. Technol., Vol. 118 (2001), pp.231-237.
DOI: https://doi.org/10.1016/s0924-0136(01)00926-8
[8]
Che Haron, C.H., Jawaid, A., The effect of machining on surface integrity of titanium alloy Ti6%Al-4%V, J. Mat. Proc. Technol., Vol. 166 (2005), pp.188-192.
DOI: https://doi.org/10.1016/j.jmatprotec.2004.08.012
[9]
Sharma, A.R.C., Aspinwall, D.K., Dewes, R.C., Bowen, P., Workpiece surface integrity considerations when finish turning gamma titanium aluminide, Wear, Vol. 249 (2001), p.473481.
DOI: https://doi.org/10.1016/s0043-1648(01)00575-0
[10]
Sharma, A.R.C., Aspinwall, D.K., Dewes, R.C., Clifton, D., Bowen, P., The effect of machined workpiece integrity on the fatique life of -titanium aluminide, in Short Communication, Int. J. Mach. Tools & Manuf., Vol. 41 (2001), pp.1681-1685.
DOI: https://doi.org/10.1016/s0890-6955(01)00034-7
[11]
Axinte, D.A., Kritmanorot, M., Axinte, M., Gindy, N.N.Z., Investigations on belt polishing of heat-resistant titanium alloy; J. Mat. Proc. Technol., Vol. 166, (2005), pp.398-404.
DOI: https://doi.org/10.1016/j.jmatprotec.2004.08.030
[12]
Boyer, R.R., Titanium for aerospace: rationale and applications, Adv. Perform. Mat., (1995), pp.349-368.
[13]
Brewer, W.D., Bird, R.K., Terryl, A.W., Titanium alloys and processing for high speed aircraft, Mat. Sci. and Engg., Vol. A243 (1998), pp.299-304.
[14]
ASTM E384-89, 1990, Standard test method for microhardness of materials.
[15]
ASTM E140-88, 1989, Standard hardness conversion tables for metals.
[16]
ASTM E407-70, 1989, Standard test method for microetching metals and alloys.
[17]
Prengel, H.G., Pfouts, W.R., Santhanam, A.T., State of the art in hard coatings for carbide cutting tools, Surface and Coatings Technology, Vol. 102 (1998), pp.177-183.
DOI: https://doi.org/10.1016/s0257-8972(96)03061-7
[18]
Lapin, J., Pelachhová, T., Microstructure stability of a cast Ti-45. 2Al-2V-0. 6Si-0. 7B alloy at temperatures 973-1073 K, Intermetallics, Vol. 14 (2006), pp.1175-1180.
DOI: https://doi.org/10.1016/j.intermet.2005.12.013