A Study of Surface Integrity when Machining Refractory Titanium Alloys

Abstract:

Article Preview

In this paper, the surface integrity is studied when machining the aeronautical titanium alloys. Surface roughness, lay, defects, microhardness and microstructure alterations are studied. The result of surface roughness judges that the CVD-coated carbide fails to produce better Ra value than the uncoated. Lay is characterized by cutting speed and feed speed directions. Feed mark, tearing surface, chip layer formation as built up layer (BUL), and deposited microchip are the defects. Microhardness is altered down to 350 microns beneath the machined surface. The first 50 microns is the soft sub-surface caused by thermal softening in ageing process. Microstructure alteration is observed in this sub-surface. Down to 200 microns is the hard sub-surface caused by the cyclic internal work hardening and then it is gradually decreasing to the bulk material hardness. It is concluded that dry machining titanium alloy is possible using uncoated carbide with cutting condition limited to finish or semi-finish for minimizing surface integrity alteration.

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Edited by:

M. S. J. Hashmi, B. S. Yilbas and S. Naher

Pages:

1059-1068

DOI:

10.4028/www.scientific.net/AMR.83-86.1059

Citation:

A. Ginting et al., "A Study of Surface Integrity when Machining Refractory Titanium Alloys", Advanced Materials Research, Vols. 83-86, pp. 1059-1068, 2010

Online since:

December 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.