Electrical Properties of Composite Films with Silicon Nanocrystals in the Insulating Matrix


Article Preview

The electrical properties of nanocomposite SiO2(Si) films containing Si nanoclusters have been investigated. The films were formed by oxide assisted growth that included ion plasma sputtering (IPS) of Si target and following high temperature annealing. It was determined that electrical conductivity of the films correspond to the mechanism of hopping conductivity with variable hopping length through the traps near the Fermi level (Mott mechanism) due to the large number of silicon dangling bonds in the dielectric matrix. The peculiarities of charge capture in nanocomposite SiO2(Si) films for their application as the medium for charge storage in memory cells have been investigated by C-V method. The good charge storage possibility of SiO2(Si) films formed by IPS deposition with followed temperature annealing has been observed. The negative differential capacitance has been revealed in conditions of semiconductor surface accumulation. The physical model for explanation of the negative differential capacitance of MIS structures with nanocomposite SiO2(Si) films as the dielectric has been proposed. The model is based on the parallel conjunction of the oxide capacitance and nanocrystals capacitance.



Edited by:

Alexei N. Nazarov, Volodymyr S. Lysenko and Denis Flandre




A.A. Evtukh and O. Bratus, "Electrical Properties of Composite Films with Silicon Nanocrystals in the Insulating Matrix", Advanced Materials Research, Vol. 854, pp. 105-110, 2014

Online since:

November 2013




[1] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, A silicon nanocrystals based memory, Appl. Phys. Lett. 68 (1996) 1377-1379.

DOI: https://doi.org/10.1063/1.116085

[2] X.Y. Chen, Y.F. Lu, Y.H. Wu, B.J. Cho, L.J. Tang, D. Lu, J.R. Dong, Correlation between optical properties and Si nanocrystal formation of Si-rich Si oxide films prepared by plasma-enhanced chemical vapor deposition, Appl. Surf. Sci. 253 (2006).

DOI: https://doi.org/10.1016/j.apsusc.2006.05.060

[3] N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, and L. Pavesi, Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition, J. Appl. Phys. 101 (2007) 113510.

DOI: https://doi.org/10.1063/1.2740335

[4] O.L. Bratus', T. Gorbanyuk, A.A. Evtukh, V. Litovchenko, Ye. Pakhlov, Properties of SiOx and SiO2(Si) nanocomposite films prepared by the PECVD method, Collection of scientific papers Nanosystems, nanomaterials, nanotechnologies, 5 (2007) 135-147.

[5] M. Ivanda, H. Gebavi, D. Ristic, K. Furic, S. Music, M. Ristic, S. Zonja, P. Biljanovic, O. Gamulin, M. Balarin, M. Montagna, M. Ferarri, G.C. Righini, Silicon nanocrystals after thermal annealing of Si-rich silicon-oxide prepared by the LPCVD method, J. Molecular Structure, 834-836 (2007).

DOI: https://doi.org/10.1016/j.molstruc.2006.09.036

[6] V. Turchanikov, A. Nazarov, V. Lysenko, E. Tsoi, A. Salonidou, A.G. Nassiopoulou, Charging/ discharging kinetics in LPCVD silicon nanocrystal MOS memory structures, Physica E, 38 (2007) 89-93.

DOI: https://doi.org/10.1016/j.physe.2006.12.034

[7] I.P. Lisovskii, I.Z. Indutnyi, B.N. Gnennyi et al., Phase-structure transformations in the SiOх films during vacuum thermoannealing, Semiconductors, 37 (2003) pp.97-102.

[8] M.S. Dunaevskii, J.J. Grob, A.G. Zabrodskii, R. Laiho, A.M. Titkov, AFM visualization of Si nanocrystals in thermal oxide SiO2 by using selective etching, Semiconductors, 38 (2004) 1254-1259.

DOI: https://doi.org/10.1134/1.1823054

[9] I.V. Antonova, M.B. Guliaev, Z. Sh. Yanovitskaya, V.A. Volodin, D.V. Marin, M.D. Yefremov, Y. Goldstein, J. Jedrzejewski, Juxtaposition of electric properties and photoluminescence depending on content of SiOх layers with silicon nanocrystals, Semiconductors, 40 (2006).

DOI: https://doi.org/10.1134/s1063782606100137

[10] O.L. Bratus', A.A. Evtukh, O.S. Lytvyn, M.V. Voitovych, V.О. Yukhymchuk, Structural properties of nanocomposite SiO2(Si) films obtained by ion-plasma sputtering and thermal annealing, Semiconductor Physics, Quantum Electronics & Optoelectronics. 14 (2011).

DOI: https://doi.org/10.15407/spqeo14.02.247

[11] I.P. Lisovskii, V.G. Litovchenko, V.B. Lozinskii, S.I. Frolov, H. Flietner, W. Fussel, E. Schmidt, IR study of short-range and local order in SiO2 and SiOx films, J. Non-Crystalline Solids. 187 (1995) 91 - 95.

DOI: https://doi.org/10.1016/0022-3093(95)00118-2

[12] M.H. Brodsky, Amorphous Semiconductor. Ed. M.H. Brodsky. Springer-Verlag Berlin, (1979).

[13] H.S. Witham, and P.M. Lenahan, The nature of the deep hole trap in MOS oxides, IEEE Trans. on Nuclear Sci. NS-34 (1987) 1147-1151.

DOI: https://doi.org/10.1109/tns.1987.4337444

[14] A.H. Edwards, and W.B. Fowler, Theory of the peroxy-radical defect in a-SiO2, Phys. Rev. B 26 (1982) 6649-6660.

DOI: https://doi.org/10.1103/physrevb.26.6649

[15] S.M. Sze, Physics of Semiconductor Devices, A Wiley-Interscience Publication John Wiley & Sons, New York, (1981).

Fetching data from Crossref.
This may take some time to load.