Charge Trapping in Hafnium Silicate Films with Modulated Composition and Enhanced Permittivity


Article Preview

Hafnium silicate dielectric films were fabricated by radio frequency magnetron sputtering. Their microstructure and electrical properties were studied versus annealing treatment. The evolution of microstructure and the formation of alternated HfO2-rich and SiO2-rich layers were observed and explained by surface directed spinodal decomposition. The stable tetragonal HfO2 phase was formed upon an annealing at 1000-1100°C. The control of annealing temperature allowed the memory window to be achieved and to be tuned as well as the dielectric constant to be enhanced.



Edited by:

Alexei N. Nazarov, Volodymyr S. Lysenko and Denis Flandre






L. Khomenkova et al., "Charge Trapping in Hafnium Silicate Films with Modulated Composition and Enhanced Permittivity", Advanced Materials Research, Vol. 854, pp. 125-133, 2014

Online since:

November 2013




[1] G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89 (2001) 5243-5275.

DOI: 10.1063/1.1361065

[2] G. He, L.Q. Zhu, Z.Q. Sun, Q. Wan, L.D. Zhang, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology, Progress in Materials Science 56 (2011) 475-572.

DOI: 10.1016/j.pmatsci.2011.01.012

[3] J. Robertson, High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 28 (2004) 265-291.

[4] International Technology Roadmap for Semiconductors (http: /public. itrs. net).

[5] K.S. Kim, M.H. Jung, G.H. Park, W.J. Cho, J. Jung, Charge Trapping Characteristics of HfO2 Layers for Tunnel-barrier-engineered Nonvolatile Memory Applications, J. Korean Phys. Soc. 55 (2009) 962-965.

DOI: 10.3938/jkps.55.962

[6] Ch. Zhu, Z. Huo, Z. Xu, M. Zhang, Q. Wang, J. Liu, Sh. Long, M. Liu, Performance enhancement of multilevel cell nonvolatile memory by using a bandgap engineered high-κ trapping layer, Appl. Phys. Lett. 97 (2010) 253503.

DOI: 10.1063/1.3531559

[7] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, A silicon nanocrystals based memory, Appl. Phys. Lett. 68 (1996) 1377-1379.

DOI: 10.1063/1.116085

[8] C.H. Lee, J. Meeter, V. Narayanan, E.C. Kan, Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications, J. Electron. Mater. 34 (2005) 1-11.

DOI: 10.1007/s11664-005-0172-8

[9] M. Perego, G. Seguini, C. Wiemer, M. Fanciulli, P. -E. Coulon, C. Bonafos, Si nanocrystal synthesis in HfO2/SiO/HfO2 multilayer structures, Nanotechnology 21 (2010) 055606.

DOI: 10.1088/0957-4484/21/5/055606

[10] L. Khomenkova, B.S. Sahu, A. Slaoui, F. Gourbilleau, Nanoscale Research Lett. 6 (2011) 172.

[11] T.Z. Lu, M. Alexe, R. Scholz, V. Talelaev, M. Zacharias, Multilevel charge storage in silicon nanocrystal multilayers, Appl. Phys. Lett. 87 (2005) 202110.

DOI: 10.1063/1.2132083

[12] C. -K. Lee, E. Cho, H. -S. Lee, C.S. Hwang, S. Han, First-principles study on doping and phase stability of HfO2, Phys. Rev. B. 78 (2008) 012102.

[13] X. Zhao and D. Vanderbilt, Phys. Rev. B 65(2002) 233106.

[14] Yu.V. Gomeniuk, Semicond. Phys., Quantum Electron. & Optoelectron., 15 (2012) 1-7.

[15] L. Khomenkova, C. Dufour, P. -E. Coulon, C. Bonafos, F. Gourbilleau, High-kHf-based layers grown by RF magnetron sputtering, Nanotechnology 21 (2010) 095704.

DOI: 10.1088/0957-4484/21/9/095704

[16] L. Khomenkova, X. Portier, J. Cardin, F. Gourbilleau, Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering, Nanotechnology 21 (2010) 285707.

DOI: 10.1088/0957-4484/21/28/285707

[17] J. Lui, X. Wu, W.N. Lennard, D. Landheer, M.W.C. Dharma-Wardana, Surface-directed spinodal decomposition in the pseudobinary alloy (HfO2)x(SiO2)1-x, J. Appl. Phys. 107 (2010) 123510.

DOI: 10.1063/1.3448232

[18] S. Monaghan, J.C. Greer, S.D. Elliott, Thermal decomposition mechanisms of hafnium and zirconium silicates at the atomic scale, J. Appl. Phys. 97 (2005) 114911.

DOI: 10.1063/1.1926399

[19] J. Liu, X. Wu, W.N. Lennard, D. Landheer, Surface-directed spinodal decomposition in hafnium silicate thin films, Phys. Rev. B. 80 (2009) 041403(R).

DOI: 10.1103/physrevb.80.041403

[20] S. Stemmer, Z. Chen, C. G. Levi, P. S. Lysaght, B. Foran, J. A. Gisby, and J. R. Taylor, Application of metastable phase diagrams to silicate thin films for alternative gate dielectrics, Jpn. J. Appl. Phys. 42 (2003) 3593-3597.

DOI: 10.1143/jjap.42.3593

[21] D. Fischer, A. Kersch, The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles, Appl. Phys. Lett. 92 (2008) 012908.

DOI: 10.1063/1.2828696

[22] G. Pant, A. Gnade, M. J. Kim, R. M. Wallace, B. E. Gnade, M. A. Quevedo-Lopez, and P.D. Kirsch, Effect of thickness on the crystallization of ultrathin HfSiON gate dielectrics, Appl. Phys. Lett. 88(2006) 032901.

DOI: 10.1063/1.2165182

[23] J. Tang, F. Zhang, P. Zoogman, J. Fabbri, S. -W. Chan, Y. Zhu, L.E. Brus, L. Steigerwald, Martensitic phase transformation of isolated HfO2, ZrO2, and HfxZr1–xO2 (0 DOI: 10.1002/adfm.200500050

[24] M. -Y. Ho, H. Gong, G.D. Wilk, B.W. Busch, M.L. Green, P.M. Voyles, D.A. Muller, M. Bude, W.H. Lin, A. See, M.E. Loomans, S.K. Lahiri, P.I. Raisanen, Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition, J. Appl. Phys. 93 (2003).

DOI: 10.1063/1.1534381

[25] C. -H. Lin, Y. Keo, Nanocrystalline ruthenium oxide embedded zirconium-doped hafnium oxide high-k nonvolatile memories, J. Appl. Phys. 110 (2011) 024101.

DOI: 10.1063/1.3606477

[26] Sh. -Ch. LV, Zh. -Y. Ge, Y. Zhou, B. Xu, L. -G. Gao, J. Yin, Y. -D. Xia, Zh. -G. Liu, A charge-trap memory device with a composition-modulated Zr-silicate high-k dielectric multilayer structure, Chin. Phys. Lett. 27 (2010) 068502.

DOI: 10.1088/0256-307x/27/6/068502

[27] H. Kim, P.C. McIntyre, Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics, J. Appl. Phys. 92 (2002) 5094-5102.

DOI: 10.1063/1.1510590

[28] S. Puri, Surface-directed spinodal decomposition, J. Phys.: Condens. Matter 17 (2005) R101.

[29] D.K. Schroder, Semiconductor materials and device characterization, 2nd ed. New York: Wiley; (1998).

[30] K.H. Chiang, S.W. Lu, Y.H. Peng, C.H. Kuang, C.S. Tsai, Characterization and modeling of fast traps in thermal agglomerating germanium nanocrystal metal-oxide-semiconductor capacitor, J. Appl. Phys. 104 (2008) 014506.

DOI: 10.1063/1.2953194

In order to see related information, you need to Login.