Carbon-Rich Nanostructurated a-SiC on Si Heterostructures for Field-Effect Electron Emission


Article Preview

The paper describes emission properties of a new nanostructured material carbon-rich amorphous silicon carbide (a-SiC) deposited on silicon wafer. Proposed material technology demonstrates that the field enhancement factor of the electron emission of this material can reach 1000 with the current density of about 1x10-3A/cm2 and efficiency of electron emission ~10%. A good correlation between the charge transfer through the a-SiC layer and electron emission from the material in high vacuum is observed.



Edited by:

Alexei N. Nazarov, Volodymyr S. Lysenko and Denis Flandre




A.N. Nazarov et al., "Carbon-Rich Nanostructurated a-SiC on Si Heterostructures for Field-Effect Electron Emission", Advanced Materials Research, Vol. 854, pp. 59-67, 2014

Online since:

November 2013




[1] T. Maki, H. Kawamura, S. Kato, J.P. Liu, and T. Kobayashi, Electronic properties of diamond thin film for planar diamond electron emitter applications, Appl. Surf. Sci. 159–160 (2000) 583–587.


[2] N.A. Fox, M.J. Youh, W.N. Wang, J.W. Steeds, H-F. Cheng, and I-N. Lin, Properties of electron field emitters prepared by selected area deposition of CVD diamond carbon films, Diamond and Related Materials 9 (2000) 1263–1269.


[3] A. G. Chakhovskoi, C. E. Hunt, G. Forsberg, T. Nilsson, and P. Persson, Reticulated vitreous carbon field emission cathodes for light source applications, J. Vac. Sci. Technol. B 21 (2003) 571-575.


[4] P. Gröning, P. Ruffieux, and L. Schlapbach, Carbon nanotubes for cold electron sources, Advanced Engineering Materials 5 (2003) 541- 550.


[5] Y. Tzeng, Y. Chen, and C. Liu, Fabrication and characterization of non-planar high-current-density carbon-nanotube coated cold cathodes, Diamond and Related Materials 12 (2003) 442–445.


[6] H.M. Wang, Z. Zheng, Y.Y. Wang, J.J. Qiu, Z.B. Guo, Z.X. Shen, and T. Yu, Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties, Appl. Phys. Lett. 96 (2010) 023106.


[7] S. Pandey, P. Rai, S. Patole, F. Gunes, G. -D. Kwon, J. -B. Yoo, P. Nikolaev, and S. Arepalli, Improved electron field emission from morphologically disordered monolayer graphene, Appl. Phys. Lett. 100 (2012) 043104.


[8] A.V. Vasin, S.P. Kolesnik, A.A. Konchits, A.V. Rusavsky, V.S. Lysenko, A.N. Nazarov, Y. Ishikawa, and Y. Koshka, Structure, paramagnetic defects and light-emission of carbon-rich a-SiC: H films, J. Appl. Phys. 103 (2008) 123710-1 - 123710-7.


[9] E.N. Kalabukhova, S.N. Lukin, D.V. Savchenko, B.D. Shanina, A.V. Vasin, V.S. Lysenko, A.N. Nazarov, A.V. Rusavsky, J. Hoentsch, and Y. Koshka, EPR study of carbon and silicon related defects in carbon-rich hydrogenated amorphous silicon-carbon films, Phys. Rev. B 81 (2010).


[10] S.O. Gordienko, A.N. Nazarov, A.V. Vasin, A.V. Rusavsky, and V.S. Lysenko, Correlation of nanostructure and charge transport properties of oxidized a-SiC: H films, Physica Status Solidi C 9 (2012) 1477 – 1480.


[11] A.V. Vasin, A.V. Rusavsky, A.N. Nazarov, V.S. Lysenko, P.M. Lytvyn, V.V. Strelchuk, K.I. Kholostov, V.P. Bondarenko, and S.P. Starik, Identification of nanoscale structure and morphology reconstruction in oxidized a-SiC: H thin films, Appl. Surf. Sci. 260 (2012).


[12] B.K. Ghosh, and B.K. Ageawal, Vibrational structure of hydrogenated amorphous silicon carbide alloys, Physica Status Solidi B 147 (1988) 97- 102.


[13] A.V. Vasin, Sh. Muto, Yu. Ishikawa, A.V. Rusavsky, T. Kimura, V.S. Lysenko, and A.N. Nazarov, Comparative study of annealing and oxidation effects in a-SiC: H and a-SiC thin films deposited by radio-frequency magnetron sputtering, Thin Solid Films 519 (2011).


[14] A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095 – 14107.


[15] B.A. Movchan, and A.V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide, Phys. Metal. Metallog. 28 (1969) 83-90.

[16] R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope. Plenum Press, New York, (1996).

[17] Transmission electron energy loss spectrometry in materials science and the EELS ATLAS, edited by C. C. Ahn, Wiley-VHC, New York, (2004).

[18] H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys. 48 (1997) 4729-4734.