A Fluorescence Ratiometric Probe for Imaging of Acidic pH in Living Cells

Abstract:

Article Preview

A new fluorescent probe 1, bearing a pyridine group as receptor for H+ and a coumarin dye as fluorophore, was synthesized and characterized by 1H NMR, 13C NMR, ESI-Ms and single crystal X-ray diffraction analysis. The probe exhibited fluorescence ratiometric response to acidic pH. With decreasing of the pH from 8.32 to 2.49, the fluorescence emission spectra exhibited large red shift from 541 to 631 nm, with the emission ratios (I541 /I631) changed dramatically from 25.9 to 0.08, and the pKa value was calculated to be 5.45. Probe 1 exhibited high selectivity to pH, other interference species including metal ions and amino acid exerted no visible effect on probe 1 detecting pH. The intracellular pH imaging applications proved that the probe is suitable for monitoring acidic pH fluctuations in living cells.

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Edited by:

Hui Li, Qunjie Xu and Honghua Ge

Pages:

83-87

Citation:

L. L. Long et al., "A Fluorescence Ratiometric Probe for Imaging of Acidic pH in Living Cells", Advanced Materials Research, Vols. 864-867, pp. 83-87, 2014

Online since:

December 2013

Export:

Price:

$41.00

* - Corresponding Author

[1] X. Chen, T. Pradhan, F. Wang, J.S. Kim and J. Yoon: Chem. Rev. Vol. 112 (2012), p. (1910).

[2] Y. Yang, Q. Zhao, W. Feng, F. Li: Chem. Rev. Vol. 113 (2013), p.192.

[3] B. Tang, F. Yu, P. Li, L. Tong, X. Duan, T. Xie and X. Wang: J. Am. Chem. Soc. Vol. 131 (2009), p.3016.

[4] J. F. Hunt, K. Fang, R. Malik, A. Snyder, N. Malhotra, T. A. E. Platts-mills and B. Gaston: Am. J. Respir. Crit. Care Med. Vol. 161 (2000), p.694.

DOI: https://doi.org/10.1164/ajrccm.161.3.9911005

[5] J. Chiche, K. Ilc, J. Laferrière, E. Trottier, F. Dayan, N. M. Mazure, M. C. Brahimi-Horn and J. Pouysségur: Cancer Res. Vol. 69 (2009), p.358.

DOI: https://doi.org/10.1158/0008-5472.can-08-2470

[6] J. Poschet, E. Perkett, V. Deretic: Trends Mol. Med. Vol. 8 (2002), p.512.

[7] Q. A. Best, R. Xu, M. E. McCarroll, L. Wang and D. J. Dyer: Org. Lett. Vol. 12 (2010), p.3219.

[8] F. Galindo, M. I. Burguete, L. Vigara, S. V. Luis, N. Kabir, J. Gavrilovic and D. A. Russell: Angew. Chem. Int. Ed. Vol. 44 (2005), p.6504.

[9] H. M. Kim, M. J. An, J. H. Hong, B. H. Jeong, O. Kwon, J. Hyon, S. Hong, K. J. Lee and B. R. Cho: Angew. Chem. Int. Ed. Vol. 47 (2008), p.2231.

[10] L. Fan, Y. Fu, Q. Liu, D. Lu, C. Dong, S. Shuang: Chem. Commun. Vol. 48 (2012), p.11202.

[11] H. Zhu, J. Fan, Q. Xu, H. Li, J. Wang, P. Gao, X. Peng: Chem. Commun. Vol. 48 (2012), p.11766.

[12] D. Srikun, E. W. Miller, D. W. Domaille and C. J. Chang: J. Am. Chem. Soc. Vol. 130 (2008), p.4596.

[13] K. Kikuchi, H. Takakusa and T. Nagano: TrAC, Trends Anal. Chem. Vol. 23 (2004), p.407.

[14] J. Han, A. Loudet, R. Barhoumi, R. C. Burghardt and K. Burgess: J. Am. Chem. Soc. Vol. 131 (2009), p.1642.

[15] X. Zhou, F. Su, H. Lu, P. Senechal-Willis, Y. Tian, R. H. Johnson and D. R. Meldrum: Biomaterials Vol. 33 (2012), p.171.

[16] Z. Diwu, C. Chen, C. Zhang, D. H. Klaubert, R. P. Haugland: Chem. Biol. Vol. 6 (1999), p.411.

[17] J. Wu, W. Liu, X. Zhuang, F. Wang, P. Wang, S. Tao, X. Zhang, S. Wu, S. Lee: Org. lett. Vol. 9 (2007), p.33.

[18] J. E. Whitaker, R. P. Haugland, F. G. Prendergast: Anal. Biochem. Vol. 194 (1991), p.330.

[19] J. A. Thomas, R. N. Buchsbaum, A. Zimniak and E. Racker: Biochemistry Vol. 18 (1979), p.2210.