Synthesis and Characterization of Novel Amphiphilic Fluorinated Triblock Copolymer


Article Preview

Atom transfer radical polymerization (ATRP) has been employed for the synthesis of a novel amphiphilic fluorinated triblock copolymer PEG-b-PS-b-PFHEM for anti-fouling coatings. The macroinitiator based on poly(ethylene oxide) monomethyl ether was used to prepare an amphiphilic diblock copolymer PEG-b-PSt-Br, which was then utilized to initiate the ATRP of fluorinated monomer perfluorohexylethyl acrylate (FHEA), resulting in an amphiphilic triblock copolymer. These copolymers were characterized by means of 1H NMR and GPC. The amphiphilic triblock copolymer surface composes of fluorinated and PEGylated blocks, and the fluorinated surface has critical surface energy, while the PEGylated surface is expected to have a relatively low interfacial energy when in contact with water. Microphase-separation of both blocks could take place and result in the reduction of protein adsorption and cell adhesion. The amphiphilic fluoropolymer has the potential application as excellent antifouling coatings and antifouling membranes.



Advanced Materials Research (Volumes 87-88)

Edited by:

Lianxiang Ma, Chuangsheng Wang and Weimin Yang




X. D. Tang et al., "Synthesis and Characterization of Novel Amphiphilic Fluorinated Triblock Copolymer", Advanced Materials Research, Vols. 87-88, pp. 36-40, 2010

Online since:

December 2009




[1] R.L. Townsin: Biofouling Vol. 19 (supplement) (2003), p.9.

[2] J.A. Finlay, S. Krishnan, M.E. Callow, J.A. Callow, R. Dong, N. Asgill, K. Wong, E.J. Kramer and C.K. Ober: Langmuir Vol. 24 (2008), p.503.


[3] E.R. Holm, C.J. Kavanagh, A.E. Meyer, D. Wiebe, B.T. Nedveb, D. Wendt, C.M. Smith, M.G. Hadfield, G. Swain, C. Darkangelo, K. Truby, J. Stein and J. Montemarano: Biofouling Vol. 22 (2006), p.233.


[4] G.W.J. Swain, W.G. Nelson and S. Preedeekaint: Biofouling Vol. 12 (1998), p.257.

[5] J. Genzer, K. Efimenko: Biofouling Vol. 22 (2006), p.339.

[6] S. Krishnan, N. Wang, C.K. Ober, J.A. Finlay, M.E. Callow, J.A. Callow, A. Hexemer, K.E. Sohn, E.J. Kramer and D.A. Fischer: Biomacromolecules Vol. 7 (2006), p.1449.


[7] C.S. Gudipati, J.A. Finlay, J.A. Callow, M.E. Callow and K.L. Wooley: Langmuir Vol. 21 (2005), p.3044.

[8] J.H. Kim, S.H. Kim, H.K. Kim, T. Akaike and S.C. Kim: J. Biomed. Mater. Res. Vol. 62 (2002), p.613.

[9] C. Freij-Larsson, T. Nylander, P. Jannascha and B. Wesslen: Biomaterials Vol. 17 (1996), p.2199.

[10] H. Hassain, A. Kerth, A. Blume and J. Kressler: J. Phys. Chem. B Vol. 108 (2004), p.9962.

[11] A. Vaidya and M.K.A. Chaudhury: J. Colloid Interface Sci. Vol. 249 (2002), p.235.

[12] S. Krishnan, R. Ayothi, A. Hexemer, J.A. Finlay, K.E. Sohn, R. Perry, C.K. Ober, E.J. Kramer, M.E. Callow, J.A. Callow and D.A. Fischer: Langmuir Vol. 22 (2006), p.5075.


[13] H. Kim, D.J. Doh, R.E. Trvine, R.E. Cohen and P.T. Hammand: Biomacromolecules Vol. 5 (2004), p.822.

[14] D.Q. Xiao, T. Van Le and M.J. Wirth: J. Anal. Chem. Vol. 76 (2004), p. (2055).

[15] L.D. Unsworth, H. Sheardown and J.L. Brash: Langmuir Vol. 21 (2005), p.1036.

[16] S. Perrier, S.G. Jackson, D.M. Haddleton, B. Ameduri and B. Bputevin: Macromolecules Vol. 36 (2003), p.9042.

[17] K. Jankova, X. Chen, J. Kops and W. Batsberg: Macromolecules Vol. 31 (1998), p.538.

Fetching data from Crossref.
This may take some time to load.