Influence of Manganese on the Hot Working Behaviour of Construction Steels


Article Preview

The microstructural control of rolled products is based on managing the austenite phase transformations during and after hot deformation to attain the desired microstructure after the cooling step. Therefore, it is very important an appropriate description of the kinetics of the hardening and softening phenomena taking place during the deformation at high temperatures, namely, dynamic recovery (DRV) and recrystallization (DRX). This investigation examines the effect of manganese contents on the hot flow behaviour of plain carbon steels. For this purpose, uniaxial hot compression tests were carried out in carbon steels in an extensive range of temperatures, from 1123 to 1373 K and strain rates, from 510-4 to 110-1 s-1. This work is focused in determining the physically-based constitutive equations that govern the plastic behaviour of plain carbon steels. Experimental results were compared with the predictions of the model and an excellent agreement over a broad range of temperatures and strain rates was obtained.



Advanced Materials Research (Volumes 89-91)

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu




G. Varela-Castro et al., "Influence of Manganese on the Hot Working Behaviour of Construction Steels", Advanced Materials Research, Vols. 89-91, pp. 580-585, 2010

Online since:

January 2010




[1] Y. Bergström: Mater Sci. Eng. Vol. 5 (1969), p.193.

[2] Y. Bergström, B. Aronsson: Metall. Trans. Vol. 3 (1972), p. (1951).

[3] Y. Estrin, H. Mecking: Acta Metall. Vol. 32 (1984), p.57.

[4] M. Avrami: J. Chem. Phys. Vol. 7 (1941), p.177.

[5] H. Mecking, U.F. Kocks: Acta Metall. Vol. 29 (1981), p.1865.

[6] U.F. Kocks, H. Mecking: Prog. in Mat. Sci. Vol. 48 (2003), p.171.

[7] J.M. Cabrera, J.M. Prado: J.J. Jonas Symp. Thermomechanical Processing of Steel, p.197.

[8] J.J. Jonas, C.M. Sellars, W.J. Mcg. Tegart: Metallurgical Reviews, Vol. 14 (1969), p.1.

[9] J.M. Cabrera, A. Al Omar, J.J. Jonas, J.M. Prado: Metall. Mater. Trans A Vol. 28A (1997), p.2233.

[10] C.M. Sellars, J.A. Whiteman: Met. Sci. Vol. 13 (1979), p.187.

[11] C.A. Hernández, J.E. Mancilla: Mater. Sci. Forum Vol. 426-432 (2003), p.1331.

[12] S.F. Medina, C.A. Hernandez: Acta Mater. Vol. 44 (1996), p.137.

[13] S. Serajzadeh, A.K. Taheri: Materials and Design Vol. 23 (2002), p.271.

[14] C. M, Sellars, G. J, Davies: The Metals Society (1979), p.03.

[15] T. Sakai, J.J. Jonas: Acta Metall. Vol. 32 (1984), p.189.

[16] F. Escobar, J.M. Cabrera, J.M. Prado: Mat. Sci. and Tech. Vol. 19 (2003), p.1137.

[17] C.M. Sellars: Mat. Sci. and Tech. Vol. 6 (1990), p.1072..

[18] D.A. Porter, K.E. Esaterling: (1981), Chs. 3-5.

[19] N. Cabañas, N. Akdut, J. Penning, B.C. de Cooman: Metall. Mater. Trans A Vol. 37A (2006), p.3305.

[20] A. Yoshie, H. Morikawa, Y. Onoe, K. Itoh: Trans. ISIJ Vol. 27 (1987), p.425.

[21] A. Laasraoui, J.J. Jonas: Metall. Trans. A Vol. 22 (1991), p.1545.

[22] J.M. Cabrera, F. Escobar, J.M. Prado: Ironmaking and Steelmaking Vol. 32 (2005), p.309.

[23] H.J. Frost, M. F Ashby: Pergamon Press (1982), Oxford, UK Chs. 1-5.