Hydrogen Embrittlement of Submicrocrystalline Ultra-Low Carbon Steel Produced by High-Pressure Torsion Straining

Abstract:

Article Preview

The tensile property and hydrogen embrittlement (HE) behavior in the submicrocrystalline ultra-low carbon steel produced by HPT straining were investigated. Elongated grains with 300 nm thickness and 600 nm length with high dislocation density were formed by the HPT straining at a rotation-speed of 0.2 rpm under a compression pressure of 5 GPa. The engineering tensile strength of the HPT processed ultra-low carbon steel for > 5 turns was 1.9 GPa, which is similar to the value of maraging high-alloy steels. The elongation increased with strain (at 5 to 10 turns), is caused by the reduction of the stress concentration due to the existence of continuously recrystallized grains. HE occurred in the HPT processed specimen for 5 turns with high tensile strength of 1.9 GPa under hydrogen atmosphere. However, its HE was suppressed via recovery process by annealing at low temperature while maintaining the high strength.

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

763-768

Citation:

Y. Todaka et al., "Hydrogen Embrittlement of Submicrocrystalline Ultra-Low Carbon Steel Produced by High-Pressure Torsion Straining", Advanced Materials Research, Vols. 89-91, pp. 763-768, 2010

Online since:

January 2010

Export:

Price:

$38.00

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), pp.103-189.

[2] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov: Russ. Metall. Vol. 1 (1981), pp.99-105.

[3] Y. Todaka, M. Yoshii, M. Umemoto, C. Wang and K. Tsuchiya: Mater. Sci. Forum Vols. 584-586 (2008), pp.597-602.

[4] Y. Todaka, H. Nagai, Y. Takubo, M. Yoshii, M. Kumagai and M. Umemoto: Int. J. Mater. Res. (2009), in press.

[5] V.M. Segal: Mater. Sci. Eng. A Vol. 197 (1995), pp.157-164.

[6] J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu and T.G. Langdon: Mater. Sci. Eng. A Vols. 410-411 (2005), pp.312-315.

[7] J.M. Baik, J. Kameda and O. Buck: Scr. Metall. Vol. 17 (1983), pp.1443-1447.

[8] J.M. Baik, J. Kameda and O. Buck, in: W.R. Corwin and G.E. Lucas (Eds. ), ASTM STP 888, Philadelphia, (1986), pp.92-110.

[9] T. Suzuki, Y. Tomota, A. Moriai and H. Tashiro: Mater. Trans. Vol. 50 (2009), pp.51-55.

[10] Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou and E.J. Lavernia: Scr. Mater. Vol. 59 (2008), pp.627-630.

[11] Y. Wang, M. Chen, F. Zhou and E. Ma: Nature Vol. 419 (2002), pp.912-915.

[12] S.V. Dobatkin, J.A. Szpunar, A.P. Zhilyaev, J.Y. Cho and A.A. Kuznetsov: Mater. Sci. Eng. A Vol. 462 (2007), pp.132-138.

[13] H.W. Kim, S.B. Kang, N. Tsuji and Y. Minamino: Acta Mater. Vol. 53 (2005), pp.1737-1749.

[14] P.L. Sun, C.Y. Yu, P.W. Kao and C.P. Chang: Scr. Mater. Vol. 52 (2005), pp.265-269.

[15] P.J. Ferreira, I.M. Robertson and H.K. Birnbaum: Acta Mater. Vol. 46 (1998), pp.1749-1757.

[16] I.M. Robertson: Eng. Fract. Mech. Vol. 68 (2001), pp.671-692.

[17] K. Takai and R. Watanuki: ISIJ Int. Vol. 43 (2003), pp.520-526.

[18] K. Minoshima, M. Nakatani, A. Sugeta and M Sakihara: Trans. Jpn. Soc. Mech. Eng. A Vol. 73 (2007), pp.118-124.

Fetching data from Crossref.
This may take some time to load.