Nanostructure and Fatigue Behavior of β-Type Titanium Alloy Subjected to High-Pressure Torsion after Aging Treatment

Abstract:

Article Preview

A novel β-type, Ti-29Nb-13Ta-4.6Zr, referred to as TNTZ has been developed for biomedical applications. Its fatigue strength is one of the most important mechanical biocompatibilities of TNTZ because, in surgical applications, it will be used under cyclic loading conditions. The effect of the microstructural refinement by high-pressure torsion (HPT) on the fatigue behaviour of TNTZ is systematically investigated in this study. TNTZ subjected to HPT processing where the rotation number (N) is 20 (TNTZAHPT) after aging treatment (AT) shows a unique microstructure having ultrafine elongated grains (285 nm in length and 36 nm in width) with high-density dislocations, a large fraction of blurred and wavy boundaries consisting of non-uniform subgrains with high misorientation and nanostructured precipitated α phase. Remarkably, a good combination of high mechanical strength (1375 MPa) and low Young’s modulus (87 GPa), compared to that of Ti-6Al-4V (Ti64) ELI, is achieved for TNTZAHPT at N = 20. TNTZAHPT a great fatigue strength, which is comparable to those of (Ti64) ELI.

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Edited by:

Graham Clark and Chun H. Wang

Pages:

9-14

Citation:

H. Yilmazer et al., "Nanostructure and Fatigue Behavior of β-Type Titanium Alloy Subjected to High-Pressure Torsion after Aging Treatment", Advanced Materials Research, Vols. 891-892, pp. 9-14, 2014

Online since:

March 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomater. I (2008) 30.

[2] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials, T., Mater. Sci. Eng. 243 (1998) 244.

DOI: https://doi.org/10.1016/s0921-5093(97)00808-3

[3] M. Nakai, M. Niinomi, T. Oneda, Improvement in fatigue strength of biomedical β type Ti-Nb-Ta-Zr alloy while maintaining low Young's modulus, Metall. Mater. Trans. A 43 (2012) 294.

DOI: https://doi.org/10.1007/s11661-011-0860-3

[4] T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, H. Toda, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments, Mater. Sci. Eng. C 25 (2005) 248.

DOI: https://doi.org/10.1016/j.msec.2004.12.007

[5] M. Niinomi, Improvement in mechanical performance of low-modulus β-Ti-Nb-Ta-Zr system alloys by microstructural control via thermomechanical processing, Inter. J. Modern Phys. B 22 (2008) 2787.

DOI: https://doi.org/10.1142/s0217979208047602

[6] H. Yilmazer, M. Niinomi, M. Nakai, K. Cho, J. Hieda, Y. Todaka, T. Miyazaki, Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion", Mater. Sci. Eng. C 3 (2013) 2499.

DOI: https://doi.org/10.1016/j.actamat.2014.07.041

[7] H. Yilmazer, M., Nakai, M. Niinomi, K. Cho, J. Hieda, T. Akahori, Y. Todaka, Microstructure and mechanical properties of a biomedical β- type titanium alloy subjected to severe plastic deformation after aging treatment, Key Eng. Mater. 508 (2012).

DOI: https://doi.org/10.4028/www.scientific.net/kem.508.152

[8] A. P., Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893.

[9] E. Thiele, J. Bretschneider, L. Hollang, N. Schell, C. Holste, Internal strains in single grains of fatigued polycrystalline nickel, Mater. Sci. Forum. 404–407 (2002) 823.

DOI: https://doi.org/10.4028/www.scientific.net/msf.404-407.823

[10] A. Y. Vinogradov, S. Agnew, Dekker Encyc. Nanosci. Nanotech., Marcel Dekker Inc., NY, (2004) 2269.

[11] H. Mughrabi, in: T. C. Lowe, R. Z. Valiev (Eds. ), Investigations and applications of severe plastic deformation, Kluwer Publishers, Dordrecht, NATO Science Series, 3/80 (2000) 241.

[12] T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, and H. Toda, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments, Mater. Sci. Eng. C 25 (2005) 248.

DOI: https://doi.org/10.1016/j.msec.2004.12.007

[13] T. Ungar, S. Ott, P. G. Sanders, A. Borbealy, J. R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Mater. 46 (1998).

DOI: https://doi.org/10.1016/s1359-6454(98)00001-9

[14] Y. Todaka, J. Sasaki, T. Moto, M. Umemoto, Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining, Scripta Mater. 59(6) (2008) 615.

DOI: https://doi.org/10.1016/j.scriptamat.2008.05.015

[15] Z. Horita and T. G. Langdon, Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion, Mater. Sci. Eng. A 410–411 (2005) 422.

DOI: https://doi.org/10.1016/j.msea.2005.08.133

[16] A. Lapatie and D. Farkas, Effect of grain size on the elastic properties of nanocrystalline alpha-iron, Scripta Mater. 48 (2003) 611.

[17] T. Akahori, M. Niinomi, K. Fukunaga, I. Inagaki, An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI, Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 31A (2000) 1937–(1948).

DOI: https://doi.org/10.1007/s11661-000-0221-0

[18] P. Cavaliere M. Cabibbo, Effect of Sc and Zr additions on the microstructure and fatigue properties of AA6106 produced by equal-channel-angular-pressing, Mater. Charact. 59 (2008) 19203.

DOI: https://doi.org/10.1016/j.matchar.2006.12.013

Fetching data from Crossref.
This may take some time to load.