A Simple Way of Producing Nano Anatase TiO2 in Polyvinyl Alcohol Fibers


Article Preview

A simple way of producing nanoTiO2 on fiber polyvinyl alcohol (PVA) has been done using solution anatase TiO2 micro powder as a solution for electro spinner machine. The process relies upon the mixing of TiO2 and PVA in deionized water before converted it into fiber. The result shows that before and after heat treatment at 300°C, the electrospinning process are able to carry 60% TiO2 in the anatase phase and to reduce the fiber size and carry the crystalline in nanosize showing a potential way of making fiber carrying nanocrystalline anatase.



Edited by:

Kuwat Triyana, Khairurrijal, Risa Suryana, Heru Susanto and Sutikno




Harsojo et al., "A Simple Way of Producing Nano Anatase TiO2 in Polyvinyl Alcohol Fibers", Advanced Materials Research, Vol. 896, pp. 45-48, 2014

Online since:

February 2014




* - Corresponding Author

[1] Y. Ohko, T. Tatsuma, and A. Fujishima, Characterization of TiO2 Photocatalysis in the Gas Phase as a Photoelectrochemical System:  Behavior of Salt-Modified Systems, J. Phys. Chem., 105 (41), pp.9909-10146 (2001).

[2] X. Zhao, Q. Zhao, and J. Yu, Development of multifunctional photoactive self-cleaning glasses, Journal of Non-Crystalline Solids, 354, 12–13, p.1424–1430 (2008).

DOI: https://doi.org/10.1016/j.jnoncrysol.2006.10.093

[3] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature 395, pp.583-585 (1998).

DOI: https://doi.org/10.1038/26936

[4] A. J. Frank, N. Kopidakis, and J. van de Lagemaat, Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties, Coordination Chemistry Reviews, 248, 13–14, p.1165–1179 (2004).

DOI: https://doi.org/10.1016/j.ccr.2004.03.015

[5] A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, and R. Stevens, Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications, 38 (4), p.473–477 (2006).

DOI: https://doi.org/10.1002/sia.2313

[6] K-J. Shieh, M. Li, Y-H. Lee, S-D. Sheu, Y-T. Liu, and Y-C. Wang, Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light, Nanomedicine: Nanotechnology, Biology and Medicine, 2 (2), pp.121-126 (2006).

DOI: https://doi.org/10.1016/j.nano.2006.04.001

[7] R. G. Costa, C. Ribeiro, and L. H. Mattoso, Morphological and photocatalytic properties of PVA/TiO2 nanocomposite fibers produced by electrospinning, J Nanosci Nanotechnol., 10(8), pp.5144-52 (2010).

DOI: https://doi.org/10.1166/jnn.2010.2405

[8] N. T. B. Linh, K-H. Lee, and B-T. Lee, Fabrication of photocatalytic PVA–TiO2 nano-fibrous hybrid membrane using the electro-spinning method, Journ. of Mater. Sci., 46(17), pp.5615-5620 (2011).

DOI: https://doi.org/10.1007/s10853-011-5511-y

[9] J. Yu, D. Wang, Y. Huang, X. Fan, X. Tang, C. Gao, J. Li, D. Zou, and K. Wu, A cylindrical core-shell-like TiO2 nanotube array anode for flexible fiber-type dye-sensitized solar cells, Nanoscale Research Letters , 6(94), pp.1-9 (2011).

DOI: https://doi.org/10.1186/1556-276x-6-94

[10] A. S. Nair, P. Zhu, V. J. Babu , S. Yang , T. Krishnamoorthy , R. Murugan, S. Peng , and S. Ramakrishna, TiO2 Derived by Titanate Route from Electrospun Nanostructures for High-Performance Dye-Sensitized Solar Cells, Langmuir, 28 (15), p.6202–6206 (2012).

DOI: https://doi.org/10.1021/la301172g

[11] B. Liu, I-D. Kim , A. Rothschild , B. H. Lee , D. Y. Kim , S. M. Jo , and H. L. Tuller, Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers, Nano Lett., 6 (9), p.2009–2013 (2006).

DOI: https://doi.org/10.1021/nl061197h

[12] Y-F. Sun, S-B. Liu , F-L. Meng , J-Y. Liu, Z. Jin, L-T. Kong, and Jin-Huai Liu, Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review, Sensors, 12, 2610-2631(2012).

DOI: https://doi.org/10.3390/s120302610

[13] A. N. Banerjee, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures, Nanotechnology, Science and Applications, 4 , p.35–65 (2011).

DOI: https://doi.org/10.2147/nsa.s9040

[14] S. Abbasizadeh, A. R. Keshtkar, M. A. Mousavian, J. Ding, and Y. Li, Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI)and thorium(IV) removal from aqueous solution, Chemical Engineering Journal, 220, p.161–171 (2013).

DOI: https://doi.org/10.1016/j.cej.2013.01.029

[15] N. T. B. Linh, K-H. Lee, and B-T. Lee, Fabrication of photocatalytic PVA–TiO2 nano-fibrous hybrid membrane using the electro-spinning method, Journ. of Mater. Sci., 46, 17, pp.5615-5620 (2011).

DOI: https://doi.org/10.1007/s10853-011-5511-y

[16] P. Lei, F. Wang, X. Gao, Y. Ding, S. Zhang, J. Zhao, S. Liu, and M. Yang, Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants, J Hazard Mater. 227-228, pp.185-94 (2012).

DOI: https://doi.org/10.1016/j.jhazmat.2012.05.029

[17] L. Liu, C. Zhao, and F. Yang, TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment, Water Res., 46(6), pp.1969-78 (2012).

DOI: https://doi.org/10.1016/j.watres.2012.01.017

[18] N. T. B. Linh, K-H. Lee, and B-T. Lee, A Novel Photoactive Nano-Filtration Module Composed of a TiO, Loaded PVA Nano-Fibrous Membrane on Sponge Al2O3 Scaffolds and Al2O3-(m-ZrO2)/t-ZrO2 Composites, Materials Transactions, 52 (7), pp.1452-1456 (2011).

DOI: https://doi.org/10.2320/matertrans.m2011039

[19] P. Ahmadpoor, A. S. Nateri, and V. Motaghitalab, The optical properties of PVA/TiO2 composite nanofibers, Journal of Applied Polymer Science, 130(1), p.78–85 (2013).

DOI: https://doi.org/10.1002/app.39147

[20] D. Di Camillo, F. Ruggieri, S. Santucci, and L. Lozzi, N-Doped TiO2 Nanofibers Deposited by Electrospinning, J. Phys. Chem. C, 116 (34), p.18427–18431 (2012).

DOI: https://doi.org/10.1021/jp302499n