Excited-State Proton Transfer in Fluorescent Photoactive Yellow Protein Containing 7-Hydroxycoumarin


Article Preview

Green fluorescent protein (GFP) has been used as an effective tool in various biological fields. The large Stokes shift resulting from an excited-state proton transfer (ESPT) is the basis for the application of GFP in such techniques as ratiometric GFP biosensors. The chromophore of GFP is known to be involved in a hydrogen-bonding network. Previous X-ray crystallographic and FTIR studies suggest that a proton wire along the hydrogen-bonding network plays a role in the ESPT. In order to examine the relationship between the ESPT and hydrogen-bonding network within proteins, we prepared an artificial fluorescent protein using a light-sensor protein, photoactive yellow protein (PYP). The native chromophore of p-coumaric acid (pCA) of PYP undergoes trans-cis isomerization after absorbing a photon, which triggers proton transfers within the hydrogen-bonding network comprised of pCA and proximal amino acid residues. Although PYP emits little fluorescence, we succeeded to reconstitute an artificial fluorescent PYP (PYP-coumarin) by substituting the pCA with its trans-lock analog 7-hydroxycoumarin. Spectroscopic studies with PYP-coumarin revealed that the chromophore takes an anionic form at neutral pH, but is protonated by lowering pH. Both the protonated and deprotonated forms of PYP-coumarin emit intense fluorescence, as compared with the native PYP. In addition, both the deprotonated and protonated forms show identical λmax values in their fluorescence spectra, indicating that ESPT occurs in the artificial fluorescent protein.



Edited by:

Kuwat Triyana, Khairurrijal, Risa Suryana, Heru Susanto and Sutikno




D. Novitasari et al., "Excited-State Proton Transfer in Fluorescent Photoactive Yellow Protein Containing 7-Hydroxycoumarin", Advanced Materials Research, Vol. 896, pp. 85-88, 2014

Online since:

February 2014




* - Corresponding Author

[1] R.Y. Tsien, The green fluorescent protein, Annu. Rev. Biochem. 67 (1998) 509-44.

[2] B.N. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescence toolbox for assessing protein location and function, Science 312 (2006) 217-24.

[3] K. Brejc, T.K. Sixma, P.A. Kitts, S.R. Kain, R.Y. Tsien, M. Ormo, S.J. Remington, Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proc. Natl. Acad. Sci. USA 94 (1997) 2306-11.

DOI: https://doi.org/10.1073/pnas.94.6.2306

[4] M. Chattoraj, B.A. King, G.U. Bublitz, S.G. Boxer, Ultra-fast excited state dynamics in green fluorescent protein : multiple states and proton transfer, Proc. Natl. Acad. Sci. USA 93 (1996) 8362-7.

DOI: https://doi.org/10.1073/pnas.93.16.8362

[5] W.W. Sprenger, W.D. Hoff, J.P. Armitage, K.J. Hellingwerf, The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein, J. Bacteriol. 175 (1993).

DOI: https://doi.org/10.1128/jb.175.10.3096-3104.1993

[6] Y. Imamoto, M. Kataoka, Structure and photoreaction of photoactive yellow protein, Photochem. Photobiol. 83 (2007) 40-9.

[7] S. Yamaguchi, H. Kamikubo, K. Kurihara, R. Kuroki, N. Niimura, N. Shimizu, Y. Yamazaki, M. Kataoka, Low-barrier hydrogen bond in photoactive yellow protein, Proc. Natl. Acad. Sci. USA. 106 (2009) 440-444.

DOI: https://doi.org/10.1073/pnas.0811882106

[8] F. Schotte, H-S. Cho, V.R.I. Kaila, H. Kamikubo, N. Dashdorj, E.R. Henry, T.J. Graber, R. Henning, M. Wulff, G. Hummer, M. Kataoka, P.A. Anfinrud, Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography, Proc. Natl. Acad. Sci. USA. 109 (2012).

DOI: https://doi.org/10.1073/pnas.1210938109

[9] T.E. Meyer, G. Tollin, J.H. Hazzard, M.A. Cusanovich, Photoactive yellow protein from the purple photothropic bacterium, Ectothiorhodospira halophila, Biophys. J. 56 (1989) 559-64.

DOI: https://doi.org/10.1016/s0006-3495(89)82703-1

[10] M.A. van der Horst, J.C. Arents, R. Kort, K.J. Hellingwerf, Binding, tuning and mechanical function of the 4-hydroxy-cinnamic acid chromophore in photoactive yellow protein, Photochem. Photobiol. Sci. 6 (2007) 571-9.

DOI: https://doi.org/10.1039/b701072a

[11] K. Mihara, O. Hisatomi, Y. Imamoto, M. Kataoka, F. Tokunaga, Functional expression and site-directed mutagenesis of photoactive yellow protein, J. Biochem. 121 (1997) 876-80.

DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a021668

[12] Y. Imamoto, H. Koshimizu, K. Mihara, O. Hisatomi, T. Mizukami, K. Tsujimoto, M. Kataoka, F. Tokunaga, Roles of amino acid residues near the chromophore of photoactive yellow protein, J. Biochem. 40 (2001) 4679-85.

DOI: https://doi.org/10.1021/bi002291u