Bouc-Wen Model Parameter Identification for a MR Fluid Damper Using Particle Swarm Optimization


Article Preview

This paper present parameter identification fitting which are employed into a current model. Irregularity hysteresis of Bouc-Wen model is colloquial with magneto-rheological (MR) fluid damper. The model parameters are identified with a Particle Swarm Optimization (PSO) which involves complex dynamic representation. The PSO algorithm specifically determines the best fit value and decrease marginal error which compare to the experimental data from various operating conditions in a given boundary.



Edited by:

Ahmad Razlan Yusoff and Ismed Iskandar




M. A. Razman et al., "Bouc-Wen Model Parameter Identification for a MR Fluid Damper Using Particle Swarm Optimization", Advanced Materials Research, Vol. 903, pp. 279-284, 2014

Online since:

February 2014




[1] Ismail, M., F. Ikhouane, and J. Rodellar, The Hysteresis Bouc-Wen Model, a Survey. Archives of Computational Methods in Engineering, 2009. 16(2): pp.161-188.


[2] N. M Kwok, Q.P.H., T. H. Nguyen and B.S. J. Li, A novel hysteric model for magnetorheological fluid dampers and parameter identification usingparticle swarm optimization. Sensors and Actuators A 132, 2006: pp.441-451.


[3] Roschke, K.C.S. a.P.N., Fuzzy Modeling of a Magnetorheological Damer using ANFIS. Proceedings of IEEE International Conference on Fuzzy Systems, 2000: pp.122-127.


[4] Ahn, K., D. Truong, and M. Islam, Modeling of a magneto-rheological (MR) fluid damper using a self tuning fuzzy mechanism. Journal of Mechanical Science and Technology, 2009. 23(5): pp.1485-1499.


[5] Kwok, N.M., et al., Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Transactions, 2007. 46(2): pp.167-179.


[6] Dyke, S.J. and B.F. Spencer, Jr. A comparison of semi-active control strategies for the MR damper. in Intelligent Information Systems, 1997. IIS '97. Proceedings. (1997).


[7] Rochdi, Y., et al., Parametric identification of nonlinear hysteretic systems. Nonlinear Dynamics, 2009. 58(1-2): pp.393-404.

[8] Zhu, X. and X. Lu, Parametric Identification of Bouc-Wen Model and Its Application in Mild Steel Damper Modeling. Procedia Engineering, 2011. 14(0): pp.318-324.


[9] Domaneschi, M., Simulation of controlled hysteresis by the semi-active Bouc-Wen model. Computers & Structures, 2012. 106–107(0): pp.245-257.


[10] Rudolph, G., Convergance analysis of canonical genetic algorithms. IEEE Trans. Neural Network 1994. 5: pp.96-101.

[11] Goldberg DE, D.K., A comparative analysi of selection schemes used in genetic algorithms. In: Rawlins GJE, editor. Foundation of genetic algorithms. San Mateo (CA): Morgan Kauffman, 1991: pp.69-93.


[12] Spencer Jr, B.F., et al., Phenomenological model of a magnetorheological damper. ASCE Journal of Engineering Mechanics. 123(3): pp.230-238.

[13] Ashfak, A., J. Abdul Jaleel, and K.K. Abdul Rasheed, Magneto-rheological (MR) Damper based vehicle suspension. International Journal of Applied Engineering Research, 2012. 7(6): pp.613-626.


[14] Gigih Priyandoko, M.Z.B., PSO-optimised adaptive nero-fuzzy system for magneto-rheological damper modelling. International Journal of Applied Electromagnetics and Mechanics, 2013. 41: pp.301-312.

[15] Wang, D.H. and W.H. Liao, Magnetorheological fluid dampers: A review of parametric modelling. Smart Materials and Structures, 2011. 20(2).

[16] Guan, X.C., P.F. Guo, and J.P. Ou, Modeling and Analyzing of Hysteresis Behavior of Magneto Rheological Dampers. Procedia Engineering, 2011. 14(0): pp.2756-2764.


[17] J. Kennedy, R.C.E., Y. Shi, Swarm Intelligence, (2001).