Work Space Surveillance of a Robot Assistance System Using a ToF Camera


Article Preview

A work space surveillance of a robot assistance system is presented to support people in production environments to prevent health damage, support disabled workers and which can also be used in medicine near areas. The system is based on a ToF camera that delivers the current situation of the observed scene in real time and enables detecting and tracking static and dynamic objects including humans. An automated path planning and a collision avoidance module of the employed robot are using the current information of the monitored work space to enable the utilization of the assistance system by non-experts.



Main Theme:

Edited by:





C. Ramer and J. Franke, "Work Space Surveillance of a Robot Assistance System Using a ToF Camera", Advanced Materials Research, Vol. 907, pp. 291-298, 2014

Online since:

April 2014




* - Corresponding Author

[1] ISO (2011) ISO 10218-1: 2011 - Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots, Geneva.


[2] Matthias B (2012) Das Normengerüst für sichere Mensch-Roboter-Kollaboration. Produktion 2020: Sichere Mensch-Maschine und Mensch-Roboter-Kooperation, Nördlingen.


[3] Thiemermann S (2005) Direkte Mensch-Roboter-Kooperation in der Kleinteilmontage mit einem SCARA-Roboter. Dissertation, Universität Stuttgart.

[4] Pilz GmbH & Co. KG (2012) Sicheres Kamerasystem SafetyEYE. Pilz Produkte. https: /shop. pilz. com/eshop/cat/de/DE/A0010B0016/Sichere-Kamerasysteme. Accessed 26 March (2012).

[5] Henrich D, Fischer M, Gecks T, Kuhn S (2008) Sichere Mensch/Roboter-Koexistenz und Kooperation. In: Robotik 2008, München.

[6] Graf J (2010) Sichere Mensch-Roboter-Kooperation durch Auswertung von Bildfolgen. Dissertation, Karlsruher Institut für Technologie.

[7] Möller T, Kraft H, Frey J, Albrecht T M, Lange R (2005) Robust 3D Measurement with PMD Sensors. Range Imaging Day, Zürich.

[8] Kolb A (2008) Kalibrierung & 2D/3D Bildverarbeitung mit dem PMD-Sensor. PMD [vision]Day2008, München.

[9] Lindner M, Kolb A, Ringbeck T (2008) New Insights into the Calibration of ToF-Sensors. Computer Vision and Pattern Recognition Workshops, Anchorage. doi: 10. 1109/CVPRW. 2008. 4563172.


[10] Lindner M, Schiller I, Kolb A, Koch R (2010) Time-of-Flight sensor calibration for accurate range sensing. Computer Vision and Image Understanding 114(12): 1318-1328. doi: 10. 1016/j. cviu. 2009. 11. 002.


[11] Welzl E (1991) Smallest enclosing disks (balls and ellipsoids). In: Maurer H (ed) New Results and New Trends in Computer Science, vol. 555, Springer, Berlin, pp.359-370. doi: 10. 1007/BFb0038202.


[12] Roweis S (1998) EM Algorithms for PCA and SPCA. In: Jordan M (ed) Advances in Neural Information Processing Systems, vol. 10, The MIT Press, Cambridge, p.626–632.

[13] Lozano-Perez T (1981) Automatic Planning of Manipulator Transfer Movements. IEEE Transactions on Systems, Man and Cybernetics 11(10): 681-698. doi: 10. 1109/TSMC. 1981. 4308589.


[14] Latombe J-C (1991) Robot motion planning, Kluwer, Boston.

[15] LaValle S M (2006) Planning algorithms, Cambridge University Press, Cambridge.

[16] Hart P E, Nilsson, N J, Raphael B (1968) A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems, Science and Cybernetics 4(2): 100-107. doi: 10. 1109/TSSC. 1968. 300136.


[17] Denavit J, Hartenberg R S (1955) A Kinematic Notation for Lower Pair Mechanism Based on Matrices. Journal of Applied Mechanics 22: 215-221.

[18] Ericsson C (2005) Real-Time Collision Detection. Elsevier, Amsterdam.

[19] Gilbert E G, Johnson D W, Keerthi S S (1988) A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal of Robotics and Automation 4(2): 193-203. doi: 10. 1109/56. (2083).


[20] Gilbert E G, Foo C-P (1990) Computing the distance between general convex objects in three-dimensional space. IEEE Transactions on Robotics and Automation 6(1): 53-61. doi: 10. 1109/70. 88117.