Integrated Product and Process Model for Production System Design and Quality Assurance for EV Battery Cells

Abstract:

Article Preview

The megatrend electric mobility induces a significant demand for high energy and high power secondary batteries. Currently lithium-ion technologies are the most promising solution for electrochemical energy storage in hybrid electric vehicles (HEV) and battery electric vehicles (BEV) [1; .Core factors that influence the quality, the performance and the cost of high energy lithium-ion batteries are production technologies, quality measurement techniques and quality management methods [3; . For this reason the Institute for Machine Tools and Industrial Management set up the Research Center for the Production of High-Energy Battery Cells (R-PHEB). In this research center production technologies are investigated according to industrial requirements. Research thrust areas are: first, process and assembly system design; second, quality assurance and management; and third, value chain analysis and design.The mass production of large lithium-ion cells for EV applications is an infant industry; new production technologies are often used in this field [. Hence, the influences of those processes on product properties are not known and the product quality can be evaluated only after the final production step. In order to obtain a resource efficient and economic production of lithium-ion cells, the correlations between the cell performance, the cell quality, the production processes and the assembly system design need to be revealed.This paper focuses on fundamental investigations of the process chain for the production of lithium-ion cells. It introduces a product-and a process-model, both of which specifically match the requirements in the field of battery production. The models can be used individually to describe the product structure or the process chain. Additionally they can be linked via a correlation matrix in order to visualize the dependencies between the requirement specifications of lithium-ion cells and the manufacturing processes (including process alternatives). Both models are based on a layered structure and contain information about battery cell design, battery type and production processes covering all tasks from coating the electrode coils to the start-of-operation of the cells.The product-model, the process-model and the correlation matrix will be implemented in a database, which in the future can be used for the methodical design of assembly systems as well as to investigate the correlations between process parameters and output quality. Furthermore, the database can assist when evaluating established process chains or preparing make-or-buy decisions in the context of battery cell production.

Info:

Periodical:

Main Theme:

Edited by:

WGP

Pages:

365-378

Citation:

G. Reinhart et al., "Integrated Product and Process Model for Production System Design and Quality Assurance for EV Battery Cells", Advanced Materials Research, Vol. 907, pp. 365-378, 2014

Online since:

April 2014

Export:

Price:

$41.00

* - Corresponding Author

[1] Linden, D.; Reddy, T. B.: Handbook of batteries. 3. ed. Aufl. New York, NY: McGraw-Hill 2002. (McGraw-Hill handbooks ).

[2] Klotz, K.; Sauer, D. -U.: Wo die Batterietechnik steht. mobility 2. 0 - Nachhaltige Mobilität 2(2011)1, 16–19.

[3] Reinhart, G.; Kurfer, J.; Zeilinger, T.; Heinz, M.: Forschungs- und Produktionszentrum für Hochleistungsenergiespeicher. ATZproduktion 4(2011)2, 54–57.

DOI: https://doi.org/10.1365/s35726-011-0029-9

[4] Brodd, R. J.; Tagawa, K.: Lithium-Ion Cell Production Processes. In: van Schalkwijk, W. A.; Scrosati, B. (Hrsg. ): Advances in Lithium-Ion Batteries. New York: Kluwer Academic/Plenum Publishers 2002, 267–288.

DOI: https://doi.org/10.1007/0-306-47508-1_10

[5] Kurfer, J.; Westermeier, M.; Tammer, C.; Reinhart, G.: Production of large-area lithium-ion cells – Preconditioning, cell stacking and quality assurance. CIRP Annals - Manufacturing Technology (in press) (2012).

DOI: https://doi.org/10.1016/j.cirp.2012.03.101

[6] Autobild: Schnell aus der Krise: Schnell aus der Krise. .

[7] Matthies, G.; Stricker, K.; Traencker, J.: The e-mobility era: Winning the race for electric cars: The e-mobility era: Winning the race for electric cars. .

[8] Waffner, J.: RWE Elektro-Mobilität: RWE Elektro-Mobilität. .

DOI: https://doi.org/10.1007/978-3-322-82227-7_24

[9] Eichinger, G.; Semrau, G.: Lithiumbatterien I. Chemie in unserer Zeit 24(1990)1, 32–36.

DOI: https://doi.org/10.1002/ciuz.19900240108

[10] Yoshio, M.: Lithium-Ion Batteries. New York: Springer (2009).

[11] Battaglia, V.: Electrode Fabrication and Failure Analysis. Berkeley. (2010).

[12] Reinhart, G.; Zeilinger, T.; Kurfer, J.; Westermeier, M.; Thiemann, C.; Glonegger, M.; Wunderer, M.; Tammer, C.; Schweier, M.; Heinz, M.: Research and Demonstration Center for the Production of Large-Area Lithium-Ion Cells. In: WGP (Hrsg. ): Proceedings of the WGP-Conference, Berlin, June 8th-9th. Heidelberg: Springer (2011).

DOI: https://doi.org/10.1007/978-3-642-24491-9_1

[13] van Schalkwijk, W. A.; Scrosati, B.: Introduction. In: van Schalkwijk, W. A.; Scrosati, B. (Hrsg. ): Advances in Lithium-Ion Batteries. New York: Kluwer Academic/Plenum Publishers 2002, 1–5.

DOI: https://doi.org/10.1007/0-306-47508-1_1

[14] Green Car Magazine: Tesla Motors Moving Quickly to Commercialization of an Electric Car: Tesla Motors Moving Quickly to Commercialization of an Electric Car. (2012-03-28).

DOI: https://doi.org/10.1057/9781137287397.0019

[15] Li, S.; Wang, H.; Hu, S. J.; Lin, Y. -T.; Abell, J. A.: Generation of assembly system configuration with equipment selection for automotive battery manufacturing. Journal of Manufacturing Systems 30 (2011), 188–195.

DOI: https://doi.org/10.1016/j.jmsy.2011.07.009

[16] Arora, P.; Zhand, Z. J.: Battery Separators. Chem. Rev. (2004)104, 4419–4462.

[17] Li, J.; Daniel, C.; Wood, D.: Materials processing for lithium-ion batteries. Journal of Power Sources 196(2011)5, 2452.

[18] Lu, Y. -C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y.: Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries. Journal of the American Chemistral Society 132(2010).

DOI: https://doi.org/10.1021/ja1036572

[19] Lee, G. -W.; Ryu, J. H.; Han, W.; Ahn, K. H.; Oh, S. M.: Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode. Journal of Power Sources (2010)195, 6049–6054.

DOI: https://doi.org/10.1016/j.jpowsour.2009.12.101

[20] Zheng, H.; Liu, G.; Song, X.; Ridgway, P.; Xun, S.; Battaglia, V. S.: Cathode Performance as a Function of Inactive Material and Void Fractions. Journal of The Electrochemical Society 10(2010)157, A1060-A1066.

DOI: https://doi.org/10.1149/1.3459878

[21] Ketterer, B.; Karl; U.; Möst, D.; Ulrich, S.: Lithium-Ionen Batterien: Stand der Technik und Anwendungspotenzial in Hybrid-, Plug-In Hybrid- und Elektrofahrzeugen. Forschungszentrum Karlsruhe GmbH, Wissenschaftliche Berichte FZKA (2009).

[22] Appetecchi, G. B.; Montanino, M.; Balducci, A.; Lux, S. F.; Winter, M.; Passerini, S.: Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolytes. Journal of Power Sources 192(2009).

DOI: https://doi.org/10.1016/j.jpowsour.2012.08.008

[23] Sauer, D. -U.: Produktionstechnik für die Batterieproduktion. Messe Düsseldorf. (Produktionstechnik auf dem Weg zur Elektromobilität - METAV 2010 ).

[24] Armand, M.; Tarascon, J. -M.: Buildung better batteries. nature (2009)451, 652–657.

[25] Chen, P. -C. P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM Transactions on Database Systems, (1976) 1, 9–36.

[26] International Organization for Standardisation (ISO) 10303-11: 2004: Industrial automation systems and integration - Product data representation and exchange - Part 11: Description methods: The EXPRESS language reference manual: ISO 10. 04. (2008).

DOI: https://doi.org/10.3403/00572091u

[27] Halpin, T. A.; Morgan, T.: Information modeling and relational databases. 2 Aufl. Burlington, MA: Morgan Kaufmann Publishers (2008).

[28] Sanford, F.: OMG Systems Modeling Language: OMG Systems Modeling Language. .

DOI: https://doi.org/10.1002/j.2334-5837.2008.tb00914.x

[29] Kemper, A.; Eickler, A.: Datenbanksysteme. 4., überarb. und erw Aufl. München [u. a. ]: Oldenbourg (2001).

[30] Stroud, J. D.: More Value: Value Stream of Detailed Process Mapping: More Value: Value Stream of Detailed Process Mapping. (2012-04-16).

DOI: https://doi.org/10.1201/b10247-10

[31] Tennant, G.: Six Sigma. Aldershot, England ;, Burlington, VT: Gower. (2001).

[32] DIN 8580: Fertigungsverfahren. Berlin: Beuth Verlag GmbH (2003).

[33] DIN 8593: Fertigungsverfahren Fügen. Berlin: Beuth Verlag GmbH (2003).

[34] Bullinger, H. -J.: Systematische Montageplanung. München: Carl Hanser (1986).

[35] VDI 2860: Montage- und Handhabungstechnik. Berlin: Beuth Verlag GmbH (1990).

[36] Ponn, J.; Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte. 2 Aufl. Heidelberg[u. a. ]: Springer (2011).

DOI: https://doi.org/10.1007/978-3-642-20580-4_12