Investigation of Biodegradable Composite Coated Magnesium Alloy Using Optical Coherence Tomography


Article Preview

Optical coherence tomography (OCT) was used to characterize poly (lactic-co-glycolic acid) (PLGA) and nanophase hydroxyapatite (nHA) / PLGA coatings on magnesium (Mg) substrates before and after immersion in revised simulated body fluid (rSBF) under standard cell culture conditions. The OCT images clearly showed: the surface of the coatings, the metallic surface underneath the coatings, the presence of a dispersed phase within the polymer matrix, and defects and structural changes to the coatings. This study demonstrated the potential utility of OCT for performing quality assurance tests and for tracking the physical effects of degradation upon biomedical implants due to its ability to rapidly render easily interpreted images of sub-surface structure in a non-destructive manner.



Edited by:

B. Mishra, M. Ionescu and T. Chandra




I. Johnson et al., "Investigation of Biodegradable Composite Coated Magnesium Alloy Using Optical Coherence Tomography", Advanced Materials Research, Vol. 922, pp. 292-297, 2014

Online since:

May 2014




* - Corresponding Author

[1] F. Witte, The history of biodegradable magnesium implants: a review, Acta Biomater. 5 (2010) 1680-1692.

[2] H. Hornberger, S. Virtanen and A. R. Boccaccini, Biomedical coatings on magnesium alloys - a review, Acta Biomater. 7 (2012) 2442-2455.


[3] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and et al., Optical coherence tomography, Science. 5035 (1991) 1178-1181.


[4] W. Drexler and J. G. Fujimoto, Optical coherence tomography : technology and applications, (2008).

[5] J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker and H. G. Tompkins, Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry, Thin Solid Films. 22 (2008) 7979-7989.


[6] J. J. Moes, M. M. Ruijken, E. Gout, H. W. Frijlink and M. I. Ugwoke, Application of process analytical technology in tablet process development using NIR spectroscopy: blend uniformity, content uniformity and coating thickness measurements, Int J Pharm. 1-2 (2008).


[7] S. J. Morris, A laser reflectometry technique for on-device coating thickness measurements, (2010).

[8] Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega and B. H. Park, GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm, Opt Express. 14 (2012) 14797-14813.


[9] M. Terashima, H. Kaneda and T. Suzuki, The role of optical coherence tomography in coronary intervention, Korean J Intern Med. 1 (2012) 1-12.

[10] T. H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable and J. G. Fujimoto, Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology, Biomed Opt Express. 7 (2013).


[11] J. M. Ridgway, J. Su, R. Wright, S. Guo, D. C. Kim, R. Barretto, G. Ahuja, A. Sepehr, J. Perez, J. H. Sills, Z. Chen and B. J. Wong, Optical coherence tomography of the newborn airway, Ann Otol Rhinol Laryngol. 5 (2008) 327-334.

[12] Y. Yang, H. M. Aydin, E. Piskin and A. J. El Haj, Assessment of a new biomimetic scaffold and its effects on bone formation by OCT, (2009).


[13] C. Janning, E. Willbold, C. Vogt, J. Nellesen, A. Meyer-Lindenberg, H. Windhagen, F. Thorey and F. Witte, Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling, Acta Biomater. 5 (2010).


[14] H. S. Brar, M. O. Platt, M. Sarntinoranont, P. I. Martin and M. V. Manuel, Magnesium as a biodegradable and bioabsorbable material for medical implants, Jom-Us. 9 (2009) 31-34.


[15] P. Gill and N. Munroe, Review on magnesium alloys as biodegradable implant materials, International Journal of Biomedical Engineering and Technology. 4 (2012) 383-398.

[16] S. Shadanbaz and G. J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: a review, Acta Biomater. 1 (2012) 20-30.


[17] J. Yang, F. Cui and I. S. Lee, Surface modifications of magnesium alloys for biomedical applications, Ann Biomed Eng. 7 (2011) 1857-1871.


[18] I. Johnson, K. Akari and H. Liu, Nanostructured Hydroxyapatite/Poly(lactic-co-glycolic acid) (PLGA) Composite Coating for Controlling Magnesium Degradation in Simulated Body Fluid, Nanotechnology. 37 (2013).


[19] L. Lao, Y. Wang, Y. Zhu, Y. Zhang and C. Gao, Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering, J Mater Sci Mater Med. 8 (2011) 1873-1884.


[20] H. Liu and T. J. Webster, Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications, Int J Nanomedicine. (2010) 299-313.


[21] M. V. Jose, V. Thomas, K. T. Johnson, D. R. Dean and E. Nyalro, Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering, Acta Biomater. 1 (2009) 305-315.


[22] G. Song and A. Atrens, Recent insights into the mechanism of magnesium corrosion and research suggestions, Adv Eng Mater. 3 (2007) 177-183.


[23] M. S. Islam, M. R. Haque, C. M. Oh, Y. Wang and B. H. Park, A common-path optical coherence tomography based electrode for structural imaging of nerves and recording of action potentials, Photonic Therapeutics and Diagnostics IX. (2013).

[24] A. Goraltchouk, V. Scanga, C. M. Morshead and M. S. Shoichet, Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release, J Control Release. 2 (2006) 400-407.


[25] P. W. Brown and B. Constantz, Hydroxyapatite and related materials, (1994).