Bimetallic Fe-Ni/Zeolite β Catalysts for Hydrogen Generation from Steam Gasification of Palm Kernel Shell


Article Preview

In this study, the potential usage of PKS as a direct source for hydrogen production is being explored in the presence of bimetallic Fe-Ni/Zeolite β (BEA) catalyst. The catalyst was prepared by co-impregnation method and calcined at temperatures between 500-700 oC to study the effect of calcination temperatures on the gas compositions from steam gasification of PKS. The textural properties and crystalline phase present were characterized using BET and X-Ray Diffraction. The catalysts were tested in steam gasification of PKS in a fixed-bed microreactor at 700 oC using 0.3 g catalyst and 0.9 g PKS. The steam to PKS ratio was 4:1 (vol) while steam to Ar ratio was 1:6 (vol.). The Fe-Ni/BEA catalysts possess lower surface area, higher pore volume and larger pore diameter as compared to the bare BEACalcination temperature is found to contribute to the crystallization of the prepared catalysts where high crystallization of Fe and Ni was observed in Fe-Ni/BEA (700) catalyst with the formation of NiO and NiFe2O4 phase. Fe-Ni/BEA (700) shows the highest composition of H2 gas produced with 76.32 vol% H2, 18.72 vol% CO2, 4.96 vol% CO and the absence of CH4. This shows that the steam gasification of PKS in the presence of Fe-Ni/BEA (700) has a potential to replace the commercial H2 production via methane reforming process.



Edited by:

Yarub Al-Douri




A. Ramli et al., "Bimetallic Fe-Ni/Zeolite β Catalysts for Hydrogen Generation from Steam Gasification of Palm Kernel Shell", Advanced Materials Research, Vol. 925, pp. 313-317, 2014

Online since:

April 2014




* - Corresponding Author

[1] P. McKendry: Bioresour. Technol. 83 (2002), 37-46.

[2] A. Cadenas and S. Cabezudo: Technol. Forecasting Soc. Change 58 (1998), 83-103.

[3] A. Midilli and I. Dincer: Int. J. Hydrogen Energy 33 (2008) 4209-4222.

[4] T. L. Kelly-Yong, K. T. Lee, A. R. Mohamed and S. Bhatia: Energy Policy 35 (2007) 5692-5701.

[5] R. Zhang, Y. Wang and R. C. Brown: Energy Convers. Manage. 48 (2007) 68-77.

[6] T. Nordgreen, T. Liliedahl and K. Sjostrom: Fuel 85 (2006) 689-694.

[7] S. J. Juutilainen, P. A. Simell and A. O. I. Krause: Appl. Catal. B 62 (2006) 86-92.

[8] F. H. Sobrino, C. R. Monray and J. L. H. Perez: Renewable Sustainable Energy Rev. 14 (2010) 772-780.

[9] T. Kimura, T. Miyazawa, J. Nishikawa, S. Kado, K. Okumura, T. Miyao, S. Naito, K. Kunimori and K. Tomishige: Appl. Catal. B 68 (2006) 160-170.

[10] M. A. Uddin, H. Tsuda and E. Sasaoka: Fuel 87 (2008) 451-459.

[11] D. Sutton, B. Kelleher and J. R. H. Ross: Fuel Process. Technol. 73 (2001) 155-173.

[12] K. Sato and K. Fujimoto: Catal. Commun, 8 (2007) 1697-1701.

[13] D. Swierczynksi, S. Libs, C. Courson and A. Kiennemann: Appl. Catal. B 74 (2007) 211-222.

[14] P. Chaiprasert and T. Vitidsant : Korean J. Chem. Eng. 26 (2009) 545-1549.

[15] R. Martinez, E. Romero, L. Garcia and R. Bilbao: Fuel Process. Technol. 85 (2003) 201-214.

[16] S. Rapagna, H. Provendier, C. Petit, A. Kiennemann and P. U. Foscolo: Biomass Bioenergy, 22 (2002) 377-388.


[17] H. M. Swaan, V. C. H. Kroll, G. A. Martin and C. Mirodatos: Catal. Today 21 (1994) 571-578.

[18] Y. Chen, P. Cui, G. Xiong and H. Xu: Asia-Pac. J. Chem. Eng. 5 (2010) 93-100.

[19] P. Salagre, J. L. G. Fierro, F. Medina and J. E. Sueiras: J. Mol. Catal. A. 106 (1996) 125-134.

[20] J. M. Rynkowski, T. Paryjczak and M. Lenik: Appl. Catal. A 106 (1993) 73-82.

[21] J. Miki, M. Asanuma, Y. Tachibana and T. Shikada: J. Catal. 151 (1995) 323-329.

[22] L. Wang, B. Li, M. Koike, S. Koso, Y. Nakagawa and Y. Xu: Appl. Catal. A 392 (2011) 248-255.

[23] A. V. Ramasamy (2002). Catalysis: Principles and Applications, Narosa Publishing House, New Delhi, 92-115.

[24] A. Ramli, S. E. E. Misi, M. F. Mohamad and S. Yusup: Adv. Sci. Lett. 19 (2013) 950-954.

[25] M. Ryden, E. Cleverstam, M. Johnsson, A. Lyngfelt and T. Mattisson: AIChE J. 56 (2010) 2211-2220.

[26] M. Ryden, E. Cleverstam, A. Lyngfelt and T. Mattisson: Int. J. of Greenhouse Gas Control 3 (2009) 693-703.

[27] K. Tomishige, T. Kimura, J. Nishikawa, T. Miyazawa and K. Kunimori: Catal. Commun. 8 (2007) 1074-1079.

[28] D. P. Harrison: Ind. Eng. Chem. Res., 47 (2008) 6486-6501.